A Short-Term Wind Power Prediction Forecasting using Variational Modes Decomposition Based on Long-Short Term Memory

Shun-chih Sun, Wei Zheng, Jingyao Zhang
{"title":"A Short-Term Wind Power Prediction Forecasting using Variational Modes Decomposition Based on Long-Short Term Memory","authors":"Shun-chih Sun, Wei Zheng, Jingyao Zhang","doi":"10.1109/ICITBE54178.2021.00015","DOIUrl":null,"url":null,"abstract":"The effective prediction of wind power has a great effect on improving the security of the power grid. Therefore this paper presents a new wind power prediction forecasting model which is the combination of variational mode decomposition(VMD) and long-short term memory(LSTM). By using combined model, the accuracy of prediction can be greatly improved. VMD can effectively overcome the instability of wind power data. LSTM can effectively retain more information, thereby greatly reducing the probability of the prediction result falling into a local option state. To a certain extent, the situation of gradient explosion and disappearance is alleviated. Ultimately greatly enhance the prediction accuracy of the results.","PeriodicalId":207276,"journal":{"name":"2021 International Conference on Information Technology and Biomedical Engineering (ICITBE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Technology and Biomedical Engineering (ICITBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITBE54178.2021.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The effective prediction of wind power has a great effect on improving the security of the power grid. Therefore this paper presents a new wind power prediction forecasting model which is the combination of variational mode decomposition(VMD) and long-short term memory(LSTM). By using combined model, the accuracy of prediction can be greatly improved. VMD can effectively overcome the instability of wind power data. LSTM can effectively retain more information, thereby greatly reducing the probability of the prediction result falling into a local option state. To a certain extent, the situation of gradient explosion and disappearance is alleviated. Ultimately greatly enhance the prediction accuracy of the results.
基于长短期记忆的变分模态分解短期风电预测预测
风电的有效预测对提高电网的安全性有很大的作用。为此,本文提出了一种将变分模态分解(VMD)与长短期记忆(LSTM)相结合的风电预测预测模型。采用组合模型,可大大提高预测精度。VMD可以有效克服风电数据的不稳定性。LSTM可以有效地保留更多的信息,从而大大降低了预测结果陷入局部选项状态的概率。在一定程度上缓解了梯度爆炸和消失的情况。最终大大提高了结果的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信