Analysis of spatial partitioning approaches for image classification

A. Avramović, V. Risojevic
{"title":"Analysis of spatial partitioning approaches for image classification","authors":"A. Avramović, V. Risojevic","doi":"10.1109/NEUREL.2014.7011509","DOIUrl":null,"url":null,"abstract":"Spatial partitioning is proven to be beneficial for the tasks of image classification, scene categorization and object recognition. The most popular method to capture rough spatial structure of the scene is spatial pyramid matching. However, spatial pyramid matching results in an image representation that is sensitive to rotations. In this research we investigate the influence of upright and rotated partitions on image classification regardless of the image filtering step. We show that simple combination of rotated spatial partitions improves classification accuracy up to 10% compared to single spatial partition commonly used in spatial pyramid matching.","PeriodicalId":402208,"journal":{"name":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2014.7011509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial partitioning is proven to be beneficial for the tasks of image classification, scene categorization and object recognition. The most popular method to capture rough spatial structure of the scene is spatial pyramid matching. However, spatial pyramid matching results in an image representation that is sensitive to rotations. In this research we investigate the influence of upright and rotated partitions on image classification regardless of the image filtering step. We show that simple combination of rotated spatial partitions improves classification accuracy up to 10% compared to single spatial partition commonly used in spatial pyramid matching.
图像分类的空间划分方法分析
空间分割被证明是有利于图像分类、场景分类和目标识别的任务。空间金字塔匹配是最常用的捕捉场景粗糙空间结构的方法。然而,空间金字塔匹配导致对旋转敏感的图像表示。在本研究中,我们研究了垂直和旋转分割对图像分类的影响,而不考虑图像滤波步骤。我们表明,与空间金字塔匹配中常用的单个空间分区相比,旋转空间分区的简单组合可将分类精度提高10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信