Automatic segmentation of pediatric brain MRIs using a maximum probability pediatric atlas

I. S. Gousias, A. Hammers, S. Counsell, A. Edwards, D. Rueckert
{"title":"Automatic segmentation of pediatric brain MRIs using a maximum probability pediatric atlas","authors":"I. S. Gousias, A. Hammers, S. Counsell, A. Edwards, D. Rueckert","doi":"10.1109/IST.2012.6295511","DOIUrl":null,"url":null,"abstract":"Automatic anatomical segmentation of pediatric brain MR data sets can be pursued with the use of registration algorithms when segmentation priors (atlases) are in hand. We investigated the performance of a maximum probability pediatric atlas (MPPA), template based registration and label propagation. The MPPA was created from the 33 pediatric data sets, available through www.brain-development.org. We evaluated the performance of the MPPA comparing with manual segmentations by means of the Dice overlap coefficient. Dice values, averaged across representative regions, were 0.90 ± 0.03 for the hippocampus, 0.92 ± 0.01 for the caudate nucleus and 0.92 ± 0.02 for the pre-central gyrus. Segmentations of 36 further unsegmented target 3T images (1-year-olds and 2-year-olds) yielded visibly high-quality results. This registration approach allows the rapid construction of automatically labeled pediatric brain atlases in a single registration step.","PeriodicalId":213330,"journal":{"name":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2012.6295511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Automatic anatomical segmentation of pediatric brain MR data sets can be pursued with the use of registration algorithms when segmentation priors (atlases) are in hand. We investigated the performance of a maximum probability pediatric atlas (MPPA), template based registration and label propagation. The MPPA was created from the 33 pediatric data sets, available through www.brain-development.org. We evaluated the performance of the MPPA comparing with manual segmentations by means of the Dice overlap coefficient. Dice values, averaged across representative regions, were 0.90 ± 0.03 for the hippocampus, 0.92 ± 0.01 for the caudate nucleus and 0.92 ± 0.02 for the pre-central gyrus. Segmentations of 36 further unsegmented target 3T images (1-year-olds and 2-year-olds) yielded visibly high-quality results. This registration approach allows the rapid construction of automatically labeled pediatric brain atlases in a single registration step.
使用最大概率儿童图谱的儿童脑核磁共振成像自动分割
当分割先验(地图集)在手时,可以使用配准算法对儿童脑MR数据集进行自动解剖分割。我们研究了最大概率儿科地图集(MPPA)的性能,基于模板的注册和标签传播。MPPA是根据33个儿科数据集创建的,可通过www.brain-development.org获得。我们通过Dice重叠系数来评估MPPA与人工分割的性能。代表性区域的平均骰子值为海马0.90±0.03,尾状核0.92±0.01,中央前回0.92±0.02。对36张未分割的目标3T图像(1岁和2岁)进行进一步分割,获得了明显的高质量结果。这种注册方法允许在单个注册步骤中快速构建自动标记的儿科脑地图集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信