An overview of learning in data streams with label scarcity

Radhika Kulkarni, S. Patil, R. Subhashini
{"title":"An overview of learning in data streams with label scarcity","authors":"Radhika Kulkarni, S. Patil, R. Subhashini","doi":"10.1109/INVENTIVE.2016.7824874","DOIUrl":null,"url":null,"abstract":"Learning in data streams has practical significance in today's knowledge intensive era. Unlike static data mining, data stream mining requires handling with the critical issues related to the unbounded memory, one-scan nature, data with high arrival rate and few labels. In real nonstationary environments enormous data come with very high-speed and label scarcity. Manual labeling of such data is impractical considering requirements of expertise, time and cost. Consequently, learning in nonstationary data streams with label scarcity is being considered as a challenging task in the field of data stream mining. The present overview describes various semi-supervised learning techniques for classifying data streams with limited labeled data.","PeriodicalId":252950,"journal":{"name":"2016 International Conference on Inventive Computation Technologies (ICICT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Inventive Computation Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INVENTIVE.2016.7824874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Learning in data streams has practical significance in today's knowledge intensive era. Unlike static data mining, data stream mining requires handling with the critical issues related to the unbounded memory, one-scan nature, data with high arrival rate and few labels. In real nonstationary environments enormous data come with very high-speed and label scarcity. Manual labeling of such data is impractical considering requirements of expertise, time and cost. Consequently, learning in nonstationary data streams with label scarcity is being considered as a challenging task in the field of data stream mining. The present overview describes various semi-supervised learning techniques for classifying data streams with limited labeled data.
在标签稀缺的数据流中学习的概述
在今天这个知识密集的时代,数据流学习具有现实意义。与静态数据挖掘不同,数据流挖掘需要处理与无界内存、一次扫描特性、高到达率和少量标签相关的关键问题。在真实的非平稳环境中,巨大的数据伴随着高速和标签的稀缺性。考虑到对专业知识、时间和成本的要求,手工标记这些数据是不切实际的。因此,在具有标签稀缺性的非平稳数据流中学习被认为是数据流挖掘领域的一项具有挑战性的任务。本综述描述了用于对具有有限标记数据的数据流进行分类的各种半监督学习技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信