A new variable step size method for the LMS adaptive filter

J. Sanubari
{"title":"A new variable step size method for the LMS adaptive filter","authors":"J. Sanubari","doi":"10.1109/APCCAS.2004.1412808","DOIUrl":null,"url":null,"abstract":"In this paper, a new cost function for improving the performance of the least mean square (LMS) method is proposed. The proposed cost function is convex. The first derivative of the proposed cost function is continued. The proof of the convexity of the function is presented. The theoretical study of the convergence characteristic shows that lower error and faster convergence can be obtained by using the proposed function. The proposed function provide large weighting factor when the error is small. On the hand, when the error is large, a small weighting factor is applied. By doing so, the effect of the noise can be reduced. The simulation results show that indeed we can lower final error and faster convergence when small alpha is applied","PeriodicalId":426683,"journal":{"name":"The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings.","volume":"10886 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2004.1412808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper, a new cost function for improving the performance of the least mean square (LMS) method is proposed. The proposed cost function is convex. The first derivative of the proposed cost function is continued. The proof of the convexity of the function is presented. The theoretical study of the convergence characteristic shows that lower error and faster convergence can be obtained by using the proposed function. The proposed function provide large weighting factor when the error is small. On the hand, when the error is large, a small weighting factor is applied. By doing so, the effect of the noise can be reduced. The simulation results show that indeed we can lower final error and faster convergence when small alpha is applied
一种新的变步长LMS自适应滤波方法
本文提出了一种新的成本函数来提高最小均方法的性能。所提出的代价函数是凸函数。继续计算所提出的成本函数的一阶导数。给出了该函数的凸性的证明。对收敛特性的理论研究表明,采用该函数可以获得较小的误差和较快的收敛速度。在误差较小的情况下,该函数提供了较大的权重因子。另一方面,当误差较大时,采用较小的加权因子。通过这样做,可以减少噪音的影响。仿真结果表明,当α值较小时,确实可以降低最终误差,加快收敛速度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信