{"title":"Optimisation of a static nonlinear compensator for bilinear systems","authors":"M.F.L. Foo, A. H. Tan, T. Yap","doi":"10.1109/IMTC.2004.1351524","DOIUrl":null,"url":null,"abstract":"A static nonlinear compensator is proposed to reduce the effects of nonlinear distortion in bilinear systems. Optimisation of the compensator using a maximum length ternary signal is discussed. Since the signal contains only odd harmonic components, the optimisation is reduced to a minimisation of the ratio of the even to odd order components at the system output. The performance of the compensator is evaluated for both first order and second order bilinear systems. A significant reduction of nonlinear distortion is obtained using the compensator. It is also shown that the tuning of the proposed compensator is robust in the presence of noise.","PeriodicalId":386903,"journal":{"name":"Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.2004.1351524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A static nonlinear compensator is proposed to reduce the effects of nonlinear distortion in bilinear systems. Optimisation of the compensator using a maximum length ternary signal is discussed. Since the signal contains only odd harmonic components, the optimisation is reduced to a minimisation of the ratio of the even to odd order components at the system output. The performance of the compensator is evaluated for both first order and second order bilinear systems. A significant reduction of nonlinear distortion is obtained using the compensator. It is also shown that the tuning of the proposed compensator is robust in the presence of noise.