Comparative Analysis of Timing Yield Improvement under Process Variations of Flip-Flops Circuits

H. Mostafa, M. Anis, M. Elmasry
{"title":"Comparative Analysis of Timing Yield Improvement under Process Variations of Flip-Flops Circuits","authors":"H. Mostafa, M. Anis, M. Elmasry","doi":"10.1109/ISVLSI.2009.23","DOIUrl":null,"url":null,"abstract":"In synchronous systems, any violation of the timing constraints of the flip-flops can cause the overall system to malfunction. Moreover, the process variations create a large variability in the flip-flop delay in scaled technologies impacting the timing yield. Overtime, many gate sizing algorithms have been introduced to improve the timing yield. This paper presents an analysis of timing yield improvement of four commonly used flip-flops under process variations. These flip-flops are designed using STMicroelectronics 65-nm CMOS technology. The analyzed flip-flops are compared for power and power-delay product (PDP) overheads to achieve this timing yield improvement. The analysis shows that the sense amplifier based flip flop (SA-FF) has a power overhead and PDP overhead of 1.7X and 2.8X, respectively, much higher than that of the transmission-gate master-slave flip flop(TG-MSFF) . The TG-MSFF exhibits the lowest relative power and PDP overheads of 30.87% and 9% ,respectively.","PeriodicalId":137508,"journal":{"name":"2009 IEEE Computer Society Annual Symposium on VLSI","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Annual Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2009.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In synchronous systems, any violation of the timing constraints of the flip-flops can cause the overall system to malfunction. Moreover, the process variations create a large variability in the flip-flop delay in scaled technologies impacting the timing yield. Overtime, many gate sizing algorithms have been introduced to improve the timing yield. This paper presents an analysis of timing yield improvement of four commonly used flip-flops under process variations. These flip-flops are designed using STMicroelectronics 65-nm CMOS technology. The analyzed flip-flops are compared for power and power-delay product (PDP) overheads to achieve this timing yield improvement. The analysis shows that the sense amplifier based flip flop (SA-FF) has a power overhead and PDP overhead of 1.7X and 2.8X, respectively, much higher than that of the transmission-gate master-slave flip flop(TG-MSFF) . The TG-MSFF exhibits the lowest relative power and PDP overheads of 30.87% and 9% ,respectively.
触发器电路工艺变化下定时良率提高的比较分析
在同步系统中,任何对触发器时序约束的违反都可能导致整个系统故障。此外,在影响时序良率的规模化技术中,工艺变化会造成触发器延迟的巨大变化。随着时间的推移,引入了许多门尺寸算法来提高时序良率。本文分析了四种常用触发器在工艺变化下的定时良率提高。这些触发器采用意法半导体65nm CMOS技术设计。对所分析的触发器进行了功率和功率延迟产品(PDP)开销的比较,以实现时序良率的提高。分析表明,基于感测放大器的触发器(SA-FF)的功率开销和PDP开销分别为1.7倍和2.8倍,远高于传输门主从触发器(TG-MSFF)。TG-MSFF的相对功率和PDP开销最低,分别为30.87%和9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信