Track Circuit Fault Diagnosis based on APSO-GMM

Mengying Zhao, Fanghao Liu, Bo Sun, Qinghu Meng
{"title":"Track Circuit Fault Diagnosis based on APSO-GMM","authors":"Mengying Zhao, Fanghao Liu, Bo Sun, Qinghu Meng","doi":"10.1109/ITNEC56291.2023.10082174","DOIUrl":null,"url":null,"abstract":"In view of the huge track circuit system and various faults, this paper proposes a Gaussian mixture model of particle swarm optimization algorithm with adaptive inertia weight to diagnose various fault modes of track circuit. EM algorithm in Gaussian mixture model is easy to be interfered by initial value and fall into local optimum, which leads to unstable diagnosis results and low diagnostic accuracy. The adaptive inertia weight particle swarm optimization algorithm is used to improve the Gaussian mixture model, find the optimal initial value for the model, and improve the stability and fault diagnosis ability of the model. The experimental results show that the improved model is more stable and accurate than the original model or the improved model using single particle swarm optimization algorithm.","PeriodicalId":218770,"journal":{"name":"2023 IEEE 6th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC)","volume":"28 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 6th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNEC56291.2023.10082174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In view of the huge track circuit system and various faults, this paper proposes a Gaussian mixture model of particle swarm optimization algorithm with adaptive inertia weight to diagnose various fault modes of track circuit. EM algorithm in Gaussian mixture model is easy to be interfered by initial value and fall into local optimum, which leads to unstable diagnosis results and low diagnostic accuracy. The adaptive inertia weight particle swarm optimization algorithm is used to improve the Gaussian mixture model, find the optimal initial value for the model, and improve the stability and fault diagnosis ability of the model. The experimental results show that the improved model is more stable and accurate than the original model or the improved model using single particle swarm optimization algorithm.
基于APSO-GMM的轨道电路故障诊断
针对轨道电路系统庞大、故障种类繁多的特点,提出了一种具有自适应惯性权值的粒子群优化算法的高斯混合模型,用于轨道电路各种故障模式的诊断。高斯混合模型下的电磁算法容易受到初始值的干扰,陷入局部最优,导致诊断结果不稳定,诊断精度低。采用自适应惯性权重粒子群优化算法对高斯混合模型进行改进,找到模型的最优初始值,提高了模型的稳定性和故障诊断能力。实验结果表明,改进后的模型比原始模型或采用单粒子群优化算法的改进模型更稳定,精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信