Acoustic signature identification using distributed diffusion adaptive networks

S. M. Taheri, H. Nosrati
{"title":"Acoustic signature identification using distributed diffusion adaptive networks","authors":"S. M. Taheri, H. Nosrati","doi":"10.1109/CSNDSP.2014.6923965","DOIUrl":null,"url":null,"abstract":"In this paper, we propose using distributed diffusion adaptive networks for acoustic signature identification, as a time-varying autoregressive (TVAR) stochastic model. A distributed adaptive sensor network considers spatio-temporal challenges simultaneously. To analyze diffusion networks under TVAR modeling problem circumstances, we investigate and elaborate on their performance under non-stationary conditions. Different versions of diffusion networks are then theoretically compared under the problem conditions. Furthermore, their superiority to single point observations is shown. Finally, the proposed algorithms are implemented on a raw and real sensor network dataset recorded from moving vehicles. The experimental results well support the theoretical findings, and demonstrate the excellence and efficacy of distributed diffusion adaptive networks for this case.","PeriodicalId":199393,"journal":{"name":"2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNDSP.2014.6923965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we propose using distributed diffusion adaptive networks for acoustic signature identification, as a time-varying autoregressive (TVAR) stochastic model. A distributed adaptive sensor network considers spatio-temporal challenges simultaneously. To analyze diffusion networks under TVAR modeling problem circumstances, we investigate and elaborate on their performance under non-stationary conditions. Different versions of diffusion networks are then theoretically compared under the problem conditions. Furthermore, their superiority to single point observations is shown. Finally, the proposed algorithms are implemented on a raw and real sensor network dataset recorded from moving vehicles. The experimental results well support the theoretical findings, and demonstrate the excellence and efficacy of distributed diffusion adaptive networks for this case.
基于分布式扩散自适应网络的声学特征识别
本文提出将分布式扩散自适应网络作为时变自回归(TVAR)随机模型用于声学特征识别。分布式自适应传感器网络同时考虑了时空挑战。为了分析TVAR建模问题下的扩散网络,我们研究并阐述了它们在非平稳条件下的性能。然后在问题条件下对不同版本的扩散网络进行理论比较。此外,还显示了它们相对于单点观测的优越性。最后,在移动车辆记录的原始和真实传感器网络数据集上实现了所提出的算法。实验结果很好地支持了理论研究结果,并证明了分布式扩散自适应网络在这种情况下的优越性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信