An information-theoretic framework for optimal temperature sensor allocation and full-chip thermal monitoring

Huapeng Zhou, Xin Li, Chen-Yong Cher, E. Kursun, Haifeng Qian, S. Yao
{"title":"An information-theoretic framework for optimal temperature sensor allocation and full-chip thermal monitoring","authors":"Huapeng Zhou, Xin Li, Chen-Yong Cher, E. Kursun, Haifeng Qian, S. Yao","doi":"10.1145/2228360.2228476","DOIUrl":null,"url":null,"abstract":"Full-chip thermal monitoring is an important and challenging issue in today's microprocessor design. In this paper, we propose a new information-theoretic framework to quantitatively model the uncertainty of on-chip temperature variation by differential entropy. Based on this framework, an efficient optimization scheme is developed to find the optimal spatial locations for temperature sensors such that the full-chip thermal map can be accurately captured with a minimum number of on-chip sensors. In addition, several efficient numerical algorithms are proposed to minimize the computational cost of the proposed entropy calculation and optimization. As will be demonstrated by our experimental examples, the proposed entropy-based method achieves superior accuracy (1.4× error reduction) for full-chip thermal monitoring over prior art.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Full-chip thermal monitoring is an important and challenging issue in today's microprocessor design. In this paper, we propose a new information-theoretic framework to quantitatively model the uncertainty of on-chip temperature variation by differential entropy. Based on this framework, an efficient optimization scheme is developed to find the optimal spatial locations for temperature sensors such that the full-chip thermal map can be accurately captured with a minimum number of on-chip sensors. In addition, several efficient numerical algorithms are proposed to minimize the computational cost of the proposed entropy calculation and optimization. As will be demonstrated by our experimental examples, the proposed entropy-based method achieves superior accuracy (1.4× error reduction) for full-chip thermal monitoring over prior art.
温度传感器优化配置与全芯片热监测的信息论框架
在当今的微处理器设计中,全芯片热监测是一个重要而具有挑战性的问题。在本文中,我们提出了一个新的信息论框架,用微分熵定量模拟芯片上温度变化的不确定性。在此基础上,提出了一种有效的优化方案,以寻找温度传感器的最佳空间位置,从而以最少的片上传感器数量准确捕获全芯片热图。此外,还提出了几种有效的数值算法,以最小化所提出的熵计算和优化的计算成本。正如我们的实验示例所证明的那样,所提出的基于熵的方法在全芯片热监测方面比现有技术具有更高的精度(误差降低1.4倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信