Evaluating the effect of voice activity detection in isolated Yoruba word recognition system

A. Aibinu, M. Salami, Athaur Rahman Najeeb, J. F. Azeez, S. Rajin
{"title":"Evaluating the effect of voice activity detection in isolated Yoruba word recognition system","authors":"A. Aibinu, M. Salami, Athaur Rahman Najeeb, J. F. Azeez, S. Rajin","doi":"10.1109/ICOM.2011.5937134","DOIUrl":null,"url":null,"abstract":"This paper discusses and evaluates the effect of voice Activity Detection (VAD) in an isolated Yoruba word recognition system (IYWRS). The word database used in this paper are collected from 22 speakers by repeating the numbers 1 to 9 three times each. A hybrid configuration of Mel-Frequency Cepstral coefficient (MFCC) and Linear Predictive Coding (LPC) have been used to extract the features of the speech samples. Artificial Neural Network algorithms are then used to classify these features. An overall accuracy of about 60% has been achieved from the two proposed feature extraction methods.","PeriodicalId":376337,"journal":{"name":"2011 4th International Conference on Mechatronics (ICOM)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 4th International Conference on Mechatronics (ICOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOM.2011.5937134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper discusses and evaluates the effect of voice Activity Detection (VAD) in an isolated Yoruba word recognition system (IYWRS). The word database used in this paper are collected from 22 speakers by repeating the numbers 1 to 9 three times each. A hybrid configuration of Mel-Frequency Cepstral coefficient (MFCC) and Linear Predictive Coding (LPC) have been used to extract the features of the speech samples. Artificial Neural Network algorithms are then used to classify these features. An overall accuracy of about 60% has been achieved from the two proposed feature extraction methods.
评价语音活动检测在孤立约鲁巴语单词识别系统中的效果
本文讨论并评价了语音活动检测(VAD)在孤立约鲁巴语单词识别系统中的效果。本文使用的词库是通过将数字1到9每个人重复三次,从22位说话者口中收集而来的。采用mel -频率倒谱系数(MFCC)和线性预测编码(LPC)的混合配置来提取语音样本的特征。然后使用人工神经网络算法对这些特征进行分类。两种特征提取方法的总体准确率约为60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信