A Novel Hybrid Short-Term Wind Power Prediction Framework Based on Singular Spectrum Analysis and Deep Belief Network Utilized Improved Adaptive Genetic Algorithm
{"title":"A Novel Hybrid Short-Term Wind Power Prediction Framework Based on Singular Spectrum Analysis and Deep Belief Network Utilized Improved Adaptive Genetic Algorithm","authors":"Weiru Yuan, Zhenhao Tang, Bing Bu, Shengxian Cao","doi":"10.1109/IAI53119.2021.9619284","DOIUrl":null,"url":null,"abstract":"A machine learning based framework involving data-mining method was proposed in this paper. To begin with, a powerful signal decomposition technique (singular spectrum analysis, SSA) was used to divide the original wind sequence into several sub-series to form a potential feature set. Then, the optimal sub-series is screened as the input feature set based on a novel swarm intelligence optimization algorithm (adaptive genetic algorithm based on improved harmony search algorithm, IAGA). Finally, a more appropriate sub-feature set together with the corresponding machine learning model (deep belief network, DBN) were established. A series of simulations is conducted by utilizing actual dataset to validate the proposed method. Comparison results represent that the proposed SSA-IAGA-DBN method achieves high prediction accuracy and robustness in short term wind power prediction tasks.","PeriodicalId":106675,"journal":{"name":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI53119.2021.9619284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A machine learning based framework involving data-mining method was proposed in this paper. To begin with, a powerful signal decomposition technique (singular spectrum analysis, SSA) was used to divide the original wind sequence into several sub-series to form a potential feature set. Then, the optimal sub-series is screened as the input feature set based on a novel swarm intelligence optimization algorithm (adaptive genetic algorithm based on improved harmony search algorithm, IAGA). Finally, a more appropriate sub-feature set together with the corresponding machine learning model (deep belief network, DBN) were established. A series of simulations is conducted by utilizing actual dataset to validate the proposed method. Comparison results represent that the proposed SSA-IAGA-DBN method achieves high prediction accuracy and robustness in short term wind power prediction tasks.