MEG analysis using ICA with spatial arrangement

Shunta Echigoya, S. Honda
{"title":"MEG analysis using ICA with spatial arrangement","authors":"Shunta Echigoya, S. Honda","doi":"10.1109/SICE.2006.314697","DOIUrl":null,"url":null,"abstract":"One of the problems in analyzing magnetoencephalography (MEG) is that brain signals are contaminated with high-level noise and artifacts. Although independent component analysis (ICA) is a useful method to separate brain signals from other components, not all signals are statistically independent. Additionally, each component should be judged as a brain signals or the others objectively. In this paper, we propose two ICA approaches that utilize spatial characteristics of brain activities to separate signals more precisely and meaningfully. Numerical experiments showed that it is helpful for ICA to use spatial arrangement, and a experiment using auditory evoked field (AEF) data brought out the features of proposal techniques","PeriodicalId":309260,"journal":{"name":"2006 SICE-ICASE International Joint Conference","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 SICE-ICASE International Joint Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2006.314697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the problems in analyzing magnetoencephalography (MEG) is that brain signals are contaminated with high-level noise and artifacts. Although independent component analysis (ICA) is a useful method to separate brain signals from other components, not all signals are statistically independent. Additionally, each component should be judged as a brain signals or the others objectively. In this paper, we propose two ICA approaches that utilize spatial characteristics of brain activities to separate signals more precisely and meaningfully. Numerical experiments showed that it is helpful for ICA to use spatial arrangement, and a experiment using auditory evoked field (AEF) data brought out the features of proposal techniques
利用空间排列的ICA进行MEG分析
脑磁图分析中的一个问题是脑信号受到高强度噪声和伪影的污染。尽管独立分量分析(ICA)是一种将大脑信号与其他成分分离的有效方法,但并非所有信号在统计上都是独立的。此外,每个组成部分都应该被客观地判断为一个大脑信号或其他信号。在本文中,我们提出了两种ICA方法,利用大脑活动的空间特征更精确和有意义地分离信号。数值实验结果表明,空间排列有助于分量分析,听觉诱发场(AEF)数据实验揭示了提议技术的特点
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信