{"title":"On the 2×2 DFT-spread space-time block code CO-OFDM for PDM optical communications","authors":"K. Puntsri","doi":"10.1109/ECTICON.2014.6839705","DOIUrl":null,"url":null,"abstract":"This work presents the combining of two methods, which are discrete Fourier transform spread (DFT-spread) and 2×2 space time block codes (STBC), to improve the system performance for polarization division multiplexing (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) communication systems. The system performances are generally measured by the unit of bit error rate (BER). For 64-QAM, the communication length of 850 km can be achieved at the forward error control (FEC) limit.","PeriodicalId":347166,"journal":{"name":"2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTICON.2014.6839705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This work presents the combining of two methods, which are discrete Fourier transform spread (DFT-spread) and 2×2 space time block codes (STBC), to improve the system performance for polarization division multiplexing (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) communication systems. The system performances are generally measured by the unit of bit error rate (BER). For 64-QAM, the communication length of 850 km can be achieved at the forward error control (FEC) limit.