{"title":"DRAC: a dynamically reconfigurable active L1 cache model for hybrid prototyping of multicore embedded systems","authors":"Ali Barzegar, Ehsan Saboori, S. Abdi","doi":"10.1109/RSP.2014.6966897","DOIUrl":null,"url":null,"abstract":"This paper presents a novel dynamically reconfigurable active L1 cache model for hybrid prototyping, called DRAC. The hybrid prototyping technique simulates a multicore embedded system using an emulation kernel on top of a single physical instance of a core. We extend hybrid prototyping by supporting memory hierarchy modeling with DRAC. The presented cache model is a standalone cycle accurate model that is further customized for multicore emulation. DRAC run-time configurability enables the embedded system designer to simulate and explore different multicore design options without the need for full FPGA prototyping. Our experimental results show 2.78% average error and 5.06% worst case error when DRAC is used as a standalone cache model in a single core design. We also observed 100% relative accuracy and less than 13% absolute worst case error in timing estimation when DRAC is used for hybrid prototyping of multicore designs.","PeriodicalId":394637,"journal":{"name":"2014 25nd IEEE International Symposium on Rapid System Prototyping","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 25nd IEEE International Symposium on Rapid System Prototyping","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSP.2014.6966897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents a novel dynamically reconfigurable active L1 cache model for hybrid prototyping, called DRAC. The hybrid prototyping technique simulates a multicore embedded system using an emulation kernel on top of a single physical instance of a core. We extend hybrid prototyping by supporting memory hierarchy modeling with DRAC. The presented cache model is a standalone cycle accurate model that is further customized for multicore emulation. DRAC run-time configurability enables the embedded system designer to simulate and explore different multicore design options without the need for full FPGA prototyping. Our experimental results show 2.78% average error and 5.06% worst case error when DRAC is used as a standalone cache model in a single core design. We also observed 100% relative accuracy and less than 13% absolute worst case error in timing estimation when DRAC is used for hybrid prototyping of multicore designs.