{"title":"Radiation of the Luminous Flux Into the Upper Half-Space in Wils - Building Design","authors":"P. Becak, T. Novák, Richard Baleja, K. Sokanský","doi":"10.1109/LUMENV.2018.8521116","DOIUrl":null,"url":null,"abstract":"The article focuses on the further verification of the software goniophotometer in the BUILDING DESIGN computational program in terms of the possibility of calculating the radiation of the liminous flux flowing into the upper half-space from public lighting systems [1]. Software goniophotometer was tested by the previous verification for the accuracy of calculations of the direct and indirect component of luminaire luminous flux. The superstructure was conceived as the possibility of inserting a network of calculating points in the shape of a sphere. We can imagine the points showing normal illuminance towards the centre of the sphere as a lux meter sensor. The system thus designed duplicates the function of a real goniophotometer, a photometric laboratory instrument that measures luminous intensity or luminous intensity curves. The principle of a goniophotometer is that it allows to measure the luminous intensity in different planes and at different angles, which can be easily interpreted by a sphere with a network of calculation points. The density of the calculation points can be entered in an angular step according to the standard luminaire measurement plan C, y. The goal of implementing such a network of calculation points is to extend the possibilities of a computational program for modelling the luminous intensity curves of existing luminaires as well as newly composed luminaires. The main goal is calculating the radiation of the liminous flux flowing into the upper half-space from the outdoor lighting systems. It will be the basis for further astronomical calculations that focus on distracting light and increased sky luminance. Based on the testing, it will be possible to create model of lighting system in some city or district of the city by inserting LDT data of real luminaires, thus creating a real lighting system with real building models. From the resulting model, it will be possible to quantify the proportion of the direct and indirect luminous flux flowing into the upper half-space.","PeriodicalId":389317,"journal":{"name":"2018 VII. Lighting Conference of the Visegrad Countries (Lumen V4)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 VII. Lighting Conference of the Visegrad Countries (Lumen V4)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LUMENV.2018.8521116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The article focuses on the further verification of the software goniophotometer in the BUILDING DESIGN computational program in terms of the possibility of calculating the radiation of the liminous flux flowing into the upper half-space from public lighting systems [1]. Software goniophotometer was tested by the previous verification for the accuracy of calculations of the direct and indirect component of luminaire luminous flux. The superstructure was conceived as the possibility of inserting a network of calculating points in the shape of a sphere. We can imagine the points showing normal illuminance towards the centre of the sphere as a lux meter sensor. The system thus designed duplicates the function of a real goniophotometer, a photometric laboratory instrument that measures luminous intensity or luminous intensity curves. The principle of a goniophotometer is that it allows to measure the luminous intensity in different planes and at different angles, which can be easily interpreted by a sphere with a network of calculation points. The density of the calculation points can be entered in an angular step according to the standard luminaire measurement plan C, y. The goal of implementing such a network of calculation points is to extend the possibilities of a computational program for modelling the luminous intensity curves of existing luminaires as well as newly composed luminaires. The main goal is calculating the radiation of the liminous flux flowing into the upper half-space from the outdoor lighting systems. It will be the basis for further astronomical calculations that focus on distracting light and increased sky luminance. Based on the testing, it will be possible to create model of lighting system in some city or district of the city by inserting LDT data of real luminaires, thus creating a real lighting system with real building models. From the resulting model, it will be possible to quantify the proportion of the direct and indirect luminous flux flowing into the upper half-space.