Online Random Forests for Urban Area Classification from Polarimetric SAR Images

R. Hänsch, O. Hellwich
{"title":"Online Random Forests for Urban Area Classification from Polarimetric SAR Images","authors":"R. Hänsch, O. Hellwich","doi":"10.1109/JURSE.2019.8808964","DOIUrl":null,"url":null,"abstract":"The growing amount of available image data renders methods unfeasible that require offline processing, i.e. the availability of all data in the memory of the computer. This paper illustrates how Random Forests can be trained by batch processing, i.e. at every iteration only a small amount of samples need to be kept in memory. The benefits of this training scheme are illustrated for the use case of urban area detection from PolSAR imagery. The achieved optimization performance is on par with using all data in the standard offline procedure.","PeriodicalId":299183,"journal":{"name":"2019 Joint Urban Remote Sensing Event (JURSE)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Joint Urban Remote Sensing Event (JURSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JURSE.2019.8808964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growing amount of available image data renders methods unfeasible that require offline processing, i.e. the availability of all data in the memory of the computer. This paper illustrates how Random Forests can be trained by batch processing, i.e. at every iteration only a small amount of samples need to be kept in memory. The benefits of this training scheme are illustrated for the use case of urban area detection from PolSAR imagery. The achieved optimization performance is on par with using all data in the standard offline procedure.
基于极化SAR图像的城市区域在线随机森林分类
越来越多的可用图像数据使得需要离线处理的方法变得不可行,即计算机内存中所有数据的可用性。本文演示了如何通过批处理训练随机森林,即在每次迭代中只需要在内存中保留少量样本。该训练方案的好处是通过PolSAR图像的城市区域检测用例说明。所实现的优化性能与在标准脱机过程中使用所有数据相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信