LCR-SMPL: Toward Real-time Human Detection and 3D Reconstruction from a Single RGB Image

E. Peña-Tapia, Ryo Hachiuma, Antoine Pasquali, H. Saito
{"title":"LCR-SMPL: Toward Real-time Human Detection and 3D Reconstruction from a Single RGB Image","authors":"E. Peña-Tapia, Ryo Hachiuma, Antoine Pasquali, H. Saito","doi":"10.1109/ISMAR-Adjunct51615.2020.00062","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for simultaneous human detection and 3D shape reconstruction from a single RGB image. It offers a low-cost alternative to existing motion capture solutions, allowing to reconstruct realistic human 3D shapes and poses by leveraging the speed of an object-detection based architecture and the extended applicability of a parametric human mesh model. Evaluation results using a synthetic dataset show that our approach is on-par with conventional 3D reconstruction methods in terms of accuracy, and outperforms them in terms of inference speed, particularly in the case of multi-person images.","PeriodicalId":433361,"journal":{"name":"2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR-Adjunct51615.2020.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel method for simultaneous human detection and 3D shape reconstruction from a single RGB image. It offers a low-cost alternative to existing motion capture solutions, allowing to reconstruct realistic human 3D shapes and poses by leveraging the speed of an object-detection based architecture and the extended applicability of a parametric human mesh model. Evaluation results using a synthetic dataset show that our approach is on-par with conventional 3D reconstruction methods in terms of accuracy, and outperforms them in terms of inference speed, particularly in the case of multi-person images.
LCR-SMPL:从单个RGB图像走向实时人体检测和三维重建
本文提出了一种从单幅RGB图像中同时进行人体检测和三维形状重建的新方法。它为现有的运动捕捉解决方案提供了一种低成本的替代方案,允许通过利用基于对象检测的架构的速度和参数化人体网格模型的扩展适用性来重建逼真的人体3D形状和姿势。使用合成数据集的评估结果表明,我们的方法在准确性方面与传统的3D重建方法相当,并且在推理速度方面优于传统方法,特别是在多人图像的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信