A Low-power and Real-time 3D Object Recognition Processor with Dense RGB-D Data Acquisition in Mobile Platforms

Dongseok Im, Gwangtae Park, Junha Ryu, Zhiyong Li, Sanghoon Kang, Donghyeon Han, Jinsu Lee, Wonhoon Park, Hankyul Kwon, H. Yoo
{"title":"A Low-power and Real-time 3D Object Recognition Processor with Dense RGB-D Data Acquisition in Mobile Platforms","authors":"Dongseok Im, Gwangtae Park, Junha Ryu, Zhiyong Li, Sanghoon Kang, Donghyeon Han, Jinsu Lee, Wonhoon Park, Hankyul Kwon, H. Yoo","doi":"10.1109/coolchips54332.2022.9772667","DOIUrl":null,"url":null,"abstract":"A low-power and real-time 3D object recognition with RGBD data acquisition system-on-chip (SoC) is proposed. By synthesizing dense RGB-D data through monocular depth estimation, the proposed system reduces the sensor power for 3D data acquisition by ×27.3 lower. Moreover, the proposed processor reduces the energy consumption of a point cloud based neural network (PNN) exploiting bit-slice-level computation and a point feature reuse method with a pipelined architecture. Additionally, the processor supports the point sampling and grouping algorithms of the PNN with a unified point processing core. Finally, the processor achieves 210.0 mW while implementing 34.0 frame-per-second (fps) end-to-end RGB-D acquisition and 3D object recognition.","PeriodicalId":266152,"journal":{"name":"2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","volume":"57 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/coolchips54332.2022.9772667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A low-power and real-time 3D object recognition with RGBD data acquisition system-on-chip (SoC) is proposed. By synthesizing dense RGB-D data through monocular depth estimation, the proposed system reduces the sensor power for 3D data acquisition by ×27.3 lower. Moreover, the proposed processor reduces the energy consumption of a point cloud based neural network (PNN) exploiting bit-slice-level computation and a point feature reuse method with a pipelined architecture. Additionally, the processor supports the point sampling and grouping algorithms of the PNN with a unified point processing core. Finally, the processor achieves 210.0 mW while implementing 34.0 frame-per-second (fps) end-to-end RGB-D acquisition and 3D object recognition.
移动平台上具有密集RGB-D数据采集的低功耗实时三维目标识别处理器
提出了一种基于RGBD数据采集的低功耗实时三维目标识别系统。该系统通过单目深度估计合成密集的RGB-D数据,将传感器采集三维数据的功耗降低×27.3。此外,该处理器还降低了基于点云的神经网络(PNN)的能量消耗,该神经网络利用位片级计算和基于流水线结构的点特征重用方法。此外,该处理器通过统一的点处理核心支持PNN的点采样和分组算法。最后,处理器达到210.0 mW,同时实现每秒34.0帧(fps)的端到端RGB-D采集和3D物体识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信