{"title":"Histogram refinement for content-based image retrieval","authors":"Greg Pass, R. Zabih","doi":"10.1109/ACV.1996.572008","DOIUrl":null,"url":null,"abstract":"Color histograms are widely used for content-based image retrieval. Their advantages are efficiency, and insensitivity to small changes in camera viewpoint. However, a histogram is a coarse characterization of an image, and so images with very different appearances can have similar histograms. We describe a technique for comparing images called histogram refinement, which imposes additional constraints on histogram based matching. Histogram refinement splits the pixels in a given bucket into several classes, based upon some local property. Within a given bucket, only pixels in the same class are compared. We describe a split histogram called a color coherence vector (CCV), which partitions each histogram bucket based on spatial coherence. CCVs can be computed at over 5 images per second on a standard workstation. A database with 15,000 images can be queried using CCVs in under 2 seconds. We demonstrate that histogram refinement can be used to distinguish images whose color histograms are indistinguishable.","PeriodicalId":222106,"journal":{"name":"Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"557","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACV.1996.572008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 557
Abstract
Color histograms are widely used for content-based image retrieval. Their advantages are efficiency, and insensitivity to small changes in camera viewpoint. However, a histogram is a coarse characterization of an image, and so images with very different appearances can have similar histograms. We describe a technique for comparing images called histogram refinement, which imposes additional constraints on histogram based matching. Histogram refinement splits the pixels in a given bucket into several classes, based upon some local property. Within a given bucket, only pixels in the same class are compared. We describe a split histogram called a color coherence vector (CCV), which partitions each histogram bucket based on spatial coherence. CCVs can be computed at over 5 images per second on a standard workstation. A database with 15,000 images can be queried using CCVs in under 2 seconds. We demonstrate that histogram refinement can be used to distinguish images whose color histograms are indistinguishable.