Feature extraction for palmprint recognition using kernel-PCA with modification in Gabor parameters

M. Kusban, A. Susanto, O. Wahyunggoro
{"title":"Feature extraction for palmprint recognition using kernel-PCA with modification in Gabor parameters","authors":"M. Kusban, A. Susanto, O. Wahyunggoro","doi":"10.1109/IBIOMED.2016.7869820","DOIUrl":null,"url":null,"abstract":"Palmprint recognition method is part of the biometric system that has a significant impact on the advancement of civilization, especially in the areas of sensing identity the person. To get the reliable system, the selection of actions to be taken include choosing a filter of skeleton method, selecting the scale orientation of Gabor method, and using appropriate a dimension reduction. The results show that the method of kernel fisher analysis (KFA), kernel principal component analysis (KPCA), linear discriminant analysis (LDA), and principal component analysis (PCA) became a leading candidate from dimension reduction. The research shows that the use of skeleton filter forwarded by scale orientation of Gabor by and the use of kPCA give better the equal error rate (EER) when compared with other researchers the same field.","PeriodicalId":171132,"journal":{"name":"2016 1st International Conference on Biomedical Engineering (IBIOMED)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 1st International Conference on Biomedical Engineering (IBIOMED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBIOMED.2016.7869820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Palmprint recognition method is part of the biometric system that has a significant impact on the advancement of civilization, especially in the areas of sensing identity the person. To get the reliable system, the selection of actions to be taken include choosing a filter of skeleton method, selecting the scale orientation of Gabor method, and using appropriate a dimension reduction. The results show that the method of kernel fisher analysis (KFA), kernel principal component analysis (KPCA), linear discriminant analysis (LDA), and principal component analysis (PCA) became a leading candidate from dimension reduction. The research shows that the use of skeleton filter forwarded by scale orientation of Gabor by and the use of kPCA give better the equal error rate (EER) when compared with other researchers the same field.
基于Gabor参数修改的核主成分分析掌纹识别特征提取
掌纹识别方法是生物识别系统的一部分,对人类文明的进步有着重要的影响,特别是在感知身份识别领域。为了得到可靠的系统,所要采取的行动包括选择骨架法的滤波器,选择Gabor法的尺度方向,以及使用适当的降维。结果表明,核费雪分析(KFA)、核主成分分析(KPCA)、线性判别分析(LDA)和主成分分析(PCA)从降维角度来看是首选方法。研究表明,利用Gabor by的尺度取向转发的骨架滤波和kPCA的等误差率(EER)比同领域的其他研究人员得到了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信