S. Ostadabbas, R. Yousefi, M. Faezipour, M. Nourani, M. Pompeo
{"title":"Pressure ulcer prevention: An efficient turning schedule for bed-bound patients","authors":"S. Ostadabbas, R. Yousefi, M. Faezipour, M. Nourani, M. Pompeo","doi":"10.1109/LISSA.2011.5754183","DOIUrl":null,"url":null,"abstract":"Pressure ulcer is a critical problem for bed-ridden and wheelchair-bound patients, diabetics, and the elderly. Patients need to be regularly repositioned to prevent excessive pressure on a single area of body, which can lead to ulcers. Pressure ulcers are costly to treat and cause many other health problems, including death. The current standard for prevention is to reposition at-risk patients every two hours. This level of attention is becoming increasingly unrealistic for already overworked nursing staff. In this paper, we present a scheduling algorithm that uses data from a pressure mat on the hospital bed to compute a repositioning schedule that minimizes nursing staff interaction while still preventing pressure ulcer formation. Our experimental results show a 30% increase in the average time between repositioning over the standard schedule. Furthermore, some postures were found to be unsafe if not changed for more than one hour.","PeriodicalId":227469,"journal":{"name":"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISSA.2011.5754183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
Pressure ulcer is a critical problem for bed-ridden and wheelchair-bound patients, diabetics, and the elderly. Patients need to be regularly repositioned to prevent excessive pressure on a single area of body, which can lead to ulcers. Pressure ulcers are costly to treat and cause many other health problems, including death. The current standard for prevention is to reposition at-risk patients every two hours. This level of attention is becoming increasingly unrealistic for already overworked nursing staff. In this paper, we present a scheduling algorithm that uses data from a pressure mat on the hospital bed to compute a repositioning schedule that minimizes nursing staff interaction while still preventing pressure ulcer formation. Our experimental results show a 30% increase in the average time between repositioning over the standard schedule. Furthermore, some postures were found to be unsafe if not changed for more than one hour.