AgriSen - A Dataset for Crop Classification

Teodora Selea, Marius-Florin Pslaru
{"title":"AgriSen - A Dataset for Crop Classification","authors":"Teodora Selea, Marius-Florin Pslaru","doi":"10.1109/SYNASC51798.2020.00049","DOIUrl":null,"url":null,"abstract":"The large amount of collected data in the field of Earth Observation has created the need for automatization in processing and extraction information from it. Thus, deep learning (DL) techniques have gained popularity among the remote sensing community. Agriculture is one of the domains where DL can improve the current state-of-the-art. In this paper, we focus on the task of crop type classification, a key task in the process of assessing the agricultural market and yield. To this purpose, we introduce a new dataset, based on publicly available data (images from satellite Sentinel-2 and annotations from Land Parcel Identification System), to be used for further research in this field.","PeriodicalId":278104,"journal":{"name":"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC51798.2020.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The large amount of collected data in the field of Earth Observation has created the need for automatization in processing and extraction information from it. Thus, deep learning (DL) techniques have gained popularity among the remote sensing community. Agriculture is one of the domains where DL can improve the current state-of-the-art. In this paper, we focus on the task of crop type classification, a key task in the process of assessing the agricultural market and yield. To this purpose, we introduce a new dataset, based on publicly available data (images from satellite Sentinel-2 and annotations from Land Parcel Identification System), to be used for further research in this field.
AgriSen -一个农作物分类数据集
对地观测领域收集的大量数据产生了对数据处理和信息提取自动化的需求。因此,深度学习技术在遥感界得到了广泛的应用。农业是DL可以提高当前技术水平的领域之一。本文重点研究了作物类型分类这一农业市场和产量评估过程中的关键任务。为此,我们引入了一个新的数据集,该数据集基于公开可用的数据(来自Sentinel-2卫星的图像和来自Land Parcel Identification System的注释),用于该领域的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信