bioMCS

Satyaki Roy, Nirnay Ghosh, Preetam Ghosh, Sajal K. Das
{"title":"bioMCS","authors":"Satyaki Roy, Nirnay Ghosh, Preetam Ghosh, Sajal K. Das","doi":"10.1145/3369740.3369788","DOIUrl":null,"url":null,"abstract":"Mobile crowdsensing (MCS) leverages the participation of active citizens and establishes a cost-effective sensing infrastructure using their devices. The MCS platform allocates sensing tasks, for which individual user reports are collected to enable decision making. Task sensing and communication not only consume user's device energy, but also spawn redundant data leading to network congestion and issues in data management at the platform's end. MCS, being a building block of sustainable smart city applications, must ensure judicious utilization of device energy and network resources. To address these challenges, this paper proposes a bio-inspired data transfer framework, bioMCS, deployed over a fog computing platform and capable of enforcing collaborative sensing among proximate users. bioMCS achieves energy efficiency and robustness through the topological properties of a biological network called transcriptional regulatory network. It employs collaborative sensing to further restrict device energy overhead by taking advantage of energy efficient device-to-device communications like Wi-Fi direct data transfer via group owner. We evaluate our framework through extensive simulation-based experiments and demonstrate that the bioMCS framework achieves better energy and network efficiency compared to individual user-centric data transfer mechanism.","PeriodicalId":240048,"journal":{"name":"Proceedings of the 21st International Conference on Distributed Computing and Networking","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Distributed Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3369740.3369788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Mobile crowdsensing (MCS) leverages the participation of active citizens and establishes a cost-effective sensing infrastructure using their devices. The MCS platform allocates sensing tasks, for which individual user reports are collected to enable decision making. Task sensing and communication not only consume user's device energy, but also spawn redundant data leading to network congestion and issues in data management at the platform's end. MCS, being a building block of sustainable smart city applications, must ensure judicious utilization of device energy and network resources. To address these challenges, this paper proposes a bio-inspired data transfer framework, bioMCS, deployed over a fog computing platform and capable of enforcing collaborative sensing among proximate users. bioMCS achieves energy efficiency and robustness through the topological properties of a biological network called transcriptional regulatory network. It employs collaborative sensing to further restrict device energy overhead by taking advantage of energy efficient device-to-device communications like Wi-Fi direct data transfer via group owner. We evaluate our framework through extensive simulation-based experiments and demonstrate that the bioMCS framework achieves better energy and network efficiency compared to individual user-centric data transfer mechanism.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信