Constructing Support Vector Machine Kernels from Orthogonal Polynomials for Face and Speaker Verification

Feng Zhou, Zhigang Fang, Jie Xu
{"title":"Constructing Support Vector Machine Kernels from Orthogonal Polynomials for Face and Speaker Verification","authors":"Feng Zhou, Zhigang Fang, Jie Xu","doi":"10.1109/ICIG.2007.77","DOIUrl":null,"url":null,"abstract":"This paper presents an alternative to construct support vector machine (SVM) kernels from orthogonal polynomials. After describing some knowledge about orthogonal polynomials, we construct kernels from orthogonal polynomials according to Mercer's condition. The elegant and fascinating characteristics of the orthogonal polynomials promise the minimum data redundancy in feature space and make it possible to represent the data with less support vectors. Experimental results show that the SVMs with orthogonal polynomial kernels outperform that with traditional kernels in terms of generalization power and less support vectors.","PeriodicalId":367106,"journal":{"name":"Fourth International Conference on Image and Graphics (ICIG 2007)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Image and Graphics (ICIG 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2007.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents an alternative to construct support vector machine (SVM) kernels from orthogonal polynomials. After describing some knowledge about orthogonal polynomials, we construct kernels from orthogonal polynomials according to Mercer's condition. The elegant and fascinating characteristics of the orthogonal polynomials promise the minimum data redundancy in feature space and make it possible to represent the data with less support vectors. Experimental results show that the SVMs with orthogonal polynomial kernels outperform that with traditional kernels in terms of generalization power and less support vectors.
基于正交多项式构造支持向量机核用于人脸和说话人验证
本文提出了一种由正交多项式构造支持向量机核的方法。在描述了正交多项式的一些知识之后,我们根据默瑟条件从正交多项式构造核。正交多项式优雅而迷人的特性保证了特征空间中最小的数据冗余,并使得用较少的支持向量来表示数据成为可能。实验结果表明,采用正交多项式核的支持向量机在泛化能力和支持向量较少方面优于传统核支持机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信