A Materials Screening Methodology for Scaled Non-Volatile Memory in the AI Era

N. Lanzillo, R. Robison
{"title":"A Materials Screening Methodology for Scaled Non-Volatile Memory in the AI Era","authors":"N. Lanzillo, R. Robison","doi":"10.1109/ans47466.2019.8963744","DOIUrl":null,"url":null,"abstract":"We demonstrate a simulation workflow based on first-principles calculations to rapidly screen candidate materials for viability as ferromagnetic electrodes in magnetic tunnel junctions (MTJs) for the next generation of high-performance magnetic random access memory (MRAM) technology. For a series of Fe-based alloys with a fixed crystal structure, we calculate formation energies, bulk spin polarization, and essential magnetic properties including magnetic anisotropy energy (MAE) and tunneling magnetoresistance (TMR). This work demonstrates a materials optimization strategy that can guide on-wafer experiments","PeriodicalId":375888,"journal":{"name":"2019 IEEE Albany Nanotechnology Symposium (ANS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Albany Nanotechnology Symposium (ANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ans47466.2019.8963744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate a simulation workflow based on first-principles calculations to rapidly screen candidate materials for viability as ferromagnetic electrodes in magnetic tunnel junctions (MTJs) for the next generation of high-performance magnetic random access memory (MRAM) technology. For a series of Fe-based alloys with a fixed crystal structure, we calculate formation energies, bulk spin polarization, and essential magnetic properties including magnetic anisotropy energy (MAE) and tunneling magnetoresistance (TMR). This work demonstrates a materials optimization strategy that can guide on-wafer experiments
AI时代尺度非易失性存储器的材料筛选方法
我们展示了一个基于第一性原理计算的模拟工作流程,以快速筛选候选材料,以作为下一代高性能磁随机存取存储器(MRAM)技术的磁隧道结(MTJs)中的铁磁电极。对于一系列具有固定晶体结构的铁基合金,我们计算了形成能、体自旋极化和基本磁性能,包括磁各向异性能(MAE)和隧道磁电阻(TMR)。这项工作证明了一种可以指导晶圆上实验的材料优化策略
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信