A New Solution Approach for Grouping Problems Based on Evolution Strategies

A. H. Kashan, M. Jenabi, Mina Husseinzadeh Kashan
{"title":"A New Solution Approach for Grouping Problems Based on Evolution Strategies","authors":"A. H. Kashan, M. Jenabi, Mina Husseinzadeh Kashan","doi":"10.1109/SoCPaR.2009.29","DOIUrl":null,"url":null,"abstract":"Since its foundation in 1994, the grouping genetic algorithm (GGA) is the only evolutionary algorithm heavily modified to suit the structure of grouping problems. In this paper we design the grouping version of evolution strategies (ES). It is well-known that ES maintains a Gaussian mutation, recombination and a selection operator for optimizing non-linear continuous functions. Therefore, the development of grouping evolution strategies (GES) for solving grouping problems that are discrete in nature, calls for developing operators having the major characteristics of the original ones and being respondent to the structure of grouping problems. We propose a mutation operator analogous to the original one that works with groups instead of scalars and use it in a two phase procedure to generate the new solution. We implement (1+Lambda)-GES and evaluate its performance versus GGA on some of hard benchmarked instances of the bin packing problem. Computational results testify that our approach is efficient and can be regarded as a promising solver for the wide class of grouping problems.","PeriodicalId":284743,"journal":{"name":"2009 International Conference of Soft Computing and Pattern Recognition","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of Soft Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoCPaR.2009.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Since its foundation in 1994, the grouping genetic algorithm (GGA) is the only evolutionary algorithm heavily modified to suit the structure of grouping problems. In this paper we design the grouping version of evolution strategies (ES). It is well-known that ES maintains a Gaussian mutation, recombination and a selection operator for optimizing non-linear continuous functions. Therefore, the development of grouping evolution strategies (GES) for solving grouping problems that are discrete in nature, calls for developing operators having the major characteristics of the original ones and being respondent to the structure of grouping problems. We propose a mutation operator analogous to the original one that works with groups instead of scalars and use it in a two phase procedure to generate the new solution. We implement (1+Lambda)-GES and evaluate its performance versus GGA on some of hard benchmarked instances of the bin packing problem. Computational results testify that our approach is efficient and can be regarded as a promising solver for the wide class of grouping problems.
一种基于进化策略的分组问题求解新方法
自1994年提出以来,分组遗传算法(GGA)是唯一一种经过大量修改以适应分组问题结构的进化算法。本文设计了进化策略(ES)的分组版本。众所周知,ES保持高斯突变、重组和选择算子来优化非线性连续函数。因此,为解决离散性分组问题,发展分组进化策略需要开发具有原有算子的主要特征并能响应分组问题结构的算子。我们提出了一个类似于原算子的变异算子,该算子使用群而不是标量,并在两阶段过程中使用它来生成新的解。我们实现了(1+Lambda)-GES,并在一些装箱问题的硬基准实例上评估了它与GGA的性能。计算结果表明,该方法是有效的,可以被认为是一种有前途的求解广泛类别的分组问题的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信