Auto-Tuning CUDA Parameters for Sparse Matrix-Vector Multiplication on GPUs

Ping Guo, Liqiang Wang
{"title":"Auto-Tuning CUDA Parameters for Sparse Matrix-Vector Multiplication on GPUs","authors":"Ping Guo, Liqiang Wang","doi":"10.1109/ICCIS.2010.285","DOIUrl":null,"url":null,"abstract":"Graphics Processing Unit (GPU) has become an attractive coprocessor for scientific computing due to its massive processing capability. The sparse matrix-vector multiplication (SpMV) is a critical operation in a wide variety of scientific and engineering applications, such as sparse linear algebra and image processing. This paper presents an auto-tuning framework that can automatically compute and select CUDA parameters for SpMV to obtain the optimal performance on specific GPUs. The framework is evaluated on two NVIDIA GPU platforms, GeForce 9500 GTX and GeForce GTX 295.","PeriodicalId":227848,"journal":{"name":"2010 International Conference on Computational and Information Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2010.285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

Graphics Processing Unit (GPU) has become an attractive coprocessor for scientific computing due to its massive processing capability. The sparse matrix-vector multiplication (SpMV) is a critical operation in a wide variety of scientific and engineering applications, such as sparse linear algebra and image processing. This paper presents an auto-tuning framework that can automatically compute and select CUDA parameters for SpMV to obtain the optimal performance on specific GPUs. The framework is evaluated on two NVIDIA GPU platforms, GeForce 9500 GTX and GeForce GTX 295.
gpu上稀疏矩阵向量乘法的CUDA参数自动调优
图形处理器(GPU)由于其庞大的处理能力,已成为科学计算领域中极具吸引力的协处理器。稀疏矩阵-向量乘法(SpMV)是一项在各种科学和工程应用中非常重要的运算,如稀疏线性代数和图像处理。本文提出了一个自动调优框架,可以自动计算和选择SpMV的CUDA参数,以在特定gpu上获得最佳性能。该框架在两个NVIDIA GPU平台GeForce 9500 GTX和GeForce GTX 295上进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信