A temperature-aware resource management algorithm for holistic energy minimization in data centers

Lijun Fu, Jianxiong Wan, Tingfeng Liu, X. Gui, Ran Zhang
{"title":"A temperature-aware resource management algorithm for holistic energy minimization in data centers","authors":"Lijun Fu, Jianxiong Wan, Tingfeng Liu, X. Gui, Ran Zhang","doi":"10.1109/RTTR.2017.7887862","DOIUrl":null,"url":null,"abstract":"Reducing energy consumption is one of the key considerations for Cloud Providers (CPs). A traditional approach to address this issue is to formulate it into an optimization problem with QoS and server temperature constraints. In this paper, we develop a Temperature-Aware Resource Management (TARM) algorithm using Lyapunov Optimization theory. One advantage of our approach is that we use a “soft” (average) server temperature constraint instead of a “hard” (instant) one without impairing system reliability. We use a real world data center workload trace to evaluate our proposed algorithm, and simulation results show that our approach can at least save 6% of the overall energy consumption.","PeriodicalId":339960,"journal":{"name":"2017 2nd Workshop on Recent Trends in Telecommunications Research (RTTR)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd Workshop on Recent Trends in Telecommunications Research (RTTR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTTR.2017.7887862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Reducing energy consumption is one of the key considerations for Cloud Providers (CPs). A traditional approach to address this issue is to formulate it into an optimization problem with QoS and server temperature constraints. In this paper, we develop a Temperature-Aware Resource Management (TARM) algorithm using Lyapunov Optimization theory. One advantage of our approach is that we use a “soft” (average) server temperature constraint instead of a “hard” (instant) one without impairing system reliability. We use a real world data center workload trace to evaluate our proposed algorithm, and simulation results show that our approach can at least save 6% of the overall energy consumption.
一种数据中心整体能源最小化的温度感知资源管理算法
降低能耗是云提供商(CPs)的关键考虑因素之一。解决此问题的传统方法是将其表述为具有QoS和服务器温度约束的优化问题。本文利用李雅普诺夫优化理论,提出了一种温度感知资源管理算法。我们的方法的一个优点是我们使用“软”(平均)服务器温度约束而不是“硬”(即时)服务器温度约束,而不会损害系统可靠性。我们使用真实世界的数据中心工作负载跟踪来评估我们提出的算法,仿真结果表明,我们的方法至少可以节省总能耗的6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信