Multirate State Tracking for Improving Intersample Behavior in Iterative Learning Control

W. Ohnishi, Nard Strijbosch, T. Oomen
{"title":"Multirate State Tracking for Improving Intersample Behavior in Iterative Learning Control","authors":"W. Ohnishi, Nard Strijbosch, T. Oomen","doi":"10.1109/ICM46511.2021.9385661","DOIUrl":null,"url":null,"abstract":"Iterative learning control (ILC) enables highperformance output tracking at sampling instances for systems that perform repetitive tasks. The aim of this paper is to present a state tracking ILC framework that reduces oscillatory intersample behavior often encountered in output tracking ILC. A multirate inversion is performed to achieve state tracking in ILC, which achieves perfect state tracking at every $n$ samples, where $n$ denotes system order. Consequently, this improves the intersample tracking performance. Moreover, convergence criteria based on frequency response data are derived and exploited in a design approach. The approach is successfully applied to a motion system confirming improved intersample tracking accuracy compared to standard frequency domain ILC.","PeriodicalId":373423,"journal":{"name":"2021 IEEE International Conference on Mechatronics (ICM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM46511.2021.9385661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Iterative learning control (ILC) enables highperformance output tracking at sampling instances for systems that perform repetitive tasks. The aim of this paper is to present a state tracking ILC framework that reduces oscillatory intersample behavior often encountered in output tracking ILC. A multirate inversion is performed to achieve state tracking in ILC, which achieves perfect state tracking at every $n$ samples, where $n$ denotes system order. Consequently, this improves the intersample tracking performance. Moreover, convergence criteria based on frequency response data are derived and exploited in a design approach. The approach is successfully applied to a motion system confirming improved intersample tracking accuracy compared to standard frequency domain ILC.
改进迭代学习控制中样本间行为的多速率状态跟踪
迭代学习控制(ILC)可以在执行重复任务的系统的采样实例上实现高性能输出跟踪。本文的目的是提出一种状态跟踪ILC框架,以减少输出跟踪ILC中经常遇到的振荡样间行为。通过多速率反演实现ILC的状态跟踪,实现了每n个样本的完美状态跟踪,其中n为系统阶数。因此,这提高了样本间跟踪性能。此外,还推导了基于频率响应数据的收敛准则,并在设计方法中加以利用。该方法成功地应用于一个运动系统,与标准频域ILC相比,该方法提高了采样间跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信