C. Tsai, Wan-Jing Li, Peng-Yu Chen, Ying-Zu Lin, Soon-Jyh Chang
{"title":"On-chip reference oscillators with process, supply voltage and temperature compensation","authors":"C. Tsai, Wan-Jing Li, Peng-Yu Chen, Ying-Zu Lin, Soon-Jyh Chang","doi":"10.1109/ISNE.2010.5669186","DOIUrl":null,"url":null,"abstract":"Here we present the design and implementation of a 130-MHz on-chip reference oscillator in a 0.18-µm 1-ploy 6-metal digital CMOS process. To compensate for the influences on the oscillation frequency by process, supply voltage and temperature (PVT) variations, the oscillator uses a bias adjustment technique without BJT devices, on-chip inductors or external components. Measurements of 8 samples in the 0 to 100°C temperature range indicate an average deviation of ±4.99% in the oscillation frequency. The process-induced frequency deviation is ±1.13% across chips at room temperature. The deviation of frequency with 10% supply voltage variation is within ±5.4%.","PeriodicalId":412093,"journal":{"name":"2010 International Symposium on Next Generation Electronics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Symposium on Next Generation Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNE.2010.5669186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Here we present the design and implementation of a 130-MHz on-chip reference oscillator in a 0.18-µm 1-ploy 6-metal digital CMOS process. To compensate for the influences on the oscillation frequency by process, supply voltage and temperature (PVT) variations, the oscillator uses a bias adjustment technique without BJT devices, on-chip inductors or external components. Measurements of 8 samples in the 0 to 100°C temperature range indicate an average deviation of ±4.99% in the oscillation frequency. The process-induced frequency deviation is ±1.13% across chips at room temperature. The deviation of frequency with 10% supply voltage variation is within ±5.4%.