Determination of glucose and Hba1c values in blood from human breath by using Radial Basis Function Neural Network via electronic nose

Hamdi Melih Saraoglu, Ali Osman Selvi
{"title":"Determination of glucose and Hba1c values in blood from human breath by using Radial Basis Function Neural Network via electronic nose","authors":"Hamdi Melih Saraoglu, Ali Osman Selvi","doi":"10.1109/BIYOMUT.2014.7026340","DOIUrl":null,"url":null,"abstract":"In this study, it is aimed to be determined glucose and HbA1c values in blood from the human breath by using electronic nose. It is known that the rate of acetone in human breath changes in diabetes. Electronic nose data is compared against glucose and HbA1c parameters in blood by using Radial Basis Function Neural Network. The minimum error rate is %24,62 for glucose parameter predictions and the minimum error rate is %14,92 for HbA1c parameter predictions. The work has been conducted in the scope of TUBITAK Project, No: 104E053.","PeriodicalId":428610,"journal":{"name":"2014 18th National Biomedical Engineering Meeting","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 18th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2014.7026340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this study, it is aimed to be determined glucose and HbA1c values in blood from the human breath by using electronic nose. It is known that the rate of acetone in human breath changes in diabetes. Electronic nose data is compared against glucose and HbA1c parameters in blood by using Radial Basis Function Neural Network. The minimum error rate is %24,62 for glucose parameter predictions and the minimum error rate is %14,92 for HbA1c parameter predictions. The work has been conducted in the scope of TUBITAK Project, No: 104E053.
电子鼻径向基函数神经网络测定人呼吸血液中葡萄糖和糖化血红蛋白
本研究旨在利用电子鼻测定人体呼吸血液中的葡萄糖和HbA1c值。众所周知,糖尿病患者呼吸中丙酮的含量会发生变化。利用径向基函数神经网络将电子鼻数据与血液中的葡萄糖和糖化血红蛋白参数进行比较。葡萄糖参数预测的最小错误率为% 24.62,糖化血红蛋白参数预测的最小错误率为% 14.92。这项工作是在TUBITAK项目范围内进行的,项目编号:104E053。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信