RACoN: a robot activity recognition approach using a convolutional neural network for the RoboCup Standard Platform League Penalty Shot Challenge

Ariel Vernaza, Osvalo Murillo
{"title":"RACoN: a robot activity recognition approach using a convolutional neural network for the RoboCup Standard Platform League Penalty Shot Challenge","authors":"Ariel Vernaza, Osvalo Murillo","doi":"10.1109/JoCICI48395.2019.9105217","DOIUrl":null,"url":null,"abstract":"In this paper, we present the early stage of the development of a multi-agent system. Embodied inside a Nao robot that will perform in the RoboCup Standard Platform League Penalty Shot Challenge, called RACoN (Robot Activity Convolution Nao). With this approach, the Nao robot will be able to interact with their environment and be aware of the activities of the other players. By mapping cameras, sensors, and actuators as individual agents across the ROS environment. Allows us to integrate then across the RaCoN Architecture, transforming it into a Pandemonium Artificial Cognitive Systems. In this kind of workspace, the robots will detect and recognize other robot activities using a ConvNet (Convolutional Neural Networks). These convolutional neural networks are trained to discriminate between teammates, opponents, archery, the ball, and the field, allowing the kicker and the goalkeeper to perform well complying with the RoboCup standard league rules.","PeriodicalId":154731,"journal":{"name":"2019 IV Jornadas Costarricenses de Investigación en Computación e Informática (JoCICI)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IV Jornadas Costarricenses de Investigación en Computación e Informática (JoCICI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JoCICI48395.2019.9105217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present the early stage of the development of a multi-agent system. Embodied inside a Nao robot that will perform in the RoboCup Standard Platform League Penalty Shot Challenge, called RACoN (Robot Activity Convolution Nao). With this approach, the Nao robot will be able to interact with their environment and be aware of the activities of the other players. By mapping cameras, sensors, and actuators as individual agents across the ROS environment. Allows us to integrate then across the RaCoN Architecture, transforming it into a Pandemonium Artificial Cognitive Systems. In this kind of workspace, the robots will detect and recognize other robot activities using a ConvNet (Convolutional Neural Networks). These convolutional neural networks are trained to discriminate between teammates, opponents, archery, the ball, and the field, allowing the kicker and the goalkeeper to perform well complying with the RoboCup standard league rules.
RACoN:机器人世界杯标准平台联赛点球挑战赛中使用卷积神经网络的机器人活动识别方法
在本文中,我们介绍了多智能体系统发展的早期阶段。在机器人世界杯标准平台联赛点球挑战赛中,一个名为RACoN(机器人活动卷积Nao)的Nao机器人将会发挥作用。通过这种方法,Nao机器人将能够与他们的环境互动,并意识到其他玩家的活动。通过将摄像机、传感器和执行器映射为ROS环境中的单个代理。允许我们将它们集成到RaCoN架构中,将其转化为一个混乱的人工认知系统。在这种工作空间中,机器人将使用卷积神经网络(ConvNet)检测和识别其他机器人的活动。这些卷积神经网络经过训练,可以区分队友、对手、射箭、球和场地,让踢球者和守门员在遵守机器人世界杯标准联赛规则的情况下表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信