A new look at computational time reversal in TLM

P. So, W. Hoefer
{"title":"A new look at computational time reversal in TLM","authors":"P. So, W. Hoefer","doi":"10.1109/NEMO.2014.6995669","DOIUrl":null,"url":null,"abstract":"A fundamental rule in Transmission Line Matrix (TLM) modeling is to ensure that the shortest wavelength in the model is always large compared to the discretization parameter. This rule is appropriate for electromagnetic analysis, but when the TLM model is used to solve inverse problems, such as computational imaging, source reconstruction, or structure synthesis - procedures that involve computational reversal of time - this wavelength restriction severely compromises the spatial resolution of the procedure by virtue of the Abbe limit. By discarding this rule we achieve super-resolution in source reconstruction using time reversal. We leverage the Johns Matrix concept and the reciprocity of TLM to achieve a breakthrough where previous attempts at structure synthesis through time reversal have been unsatisfactory.","PeriodicalId":273349,"journal":{"name":"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO.2014.6995669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A fundamental rule in Transmission Line Matrix (TLM) modeling is to ensure that the shortest wavelength in the model is always large compared to the discretization parameter. This rule is appropriate for electromagnetic analysis, but when the TLM model is used to solve inverse problems, such as computational imaging, source reconstruction, or structure synthesis - procedures that involve computational reversal of time - this wavelength restriction severely compromises the spatial resolution of the procedure by virtue of the Abbe limit. By discarding this rule we achieve super-resolution in source reconstruction using time reversal. We leverage the Johns Matrix concept and the reciprocity of TLM to achieve a breakthrough where previous attempts at structure synthesis through time reversal have been unsatisfactory.
TLM中计算时间反转的新研究
传输线矩阵(TLM)建模的一个基本原则是确保模型中的最短波长始终大于离散化参数。该规则适用于电磁分析,但当TLM模型用于解决反问题时,例如计算成像,源重建或结构合成-涉及计算时间反转的过程-由于阿贝极限,这种波长限制严重损害了该过程的空间分辨率。通过摒弃这一规则,利用时间反转实现了源重构的超分辨率。我们利用约翰矩阵概念和TLM的互易性来实现突破,以前通过时间反转进行结构合成的尝试并不令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信