Vector channel coherence in a complex outdoor environment at 2.4 GHz

S. Ellingson
{"title":"Vector channel coherence in a complex outdoor environment at 2.4 GHz","authors":"S. Ellingson","doi":"10.1109/APS.2003.1220157","DOIUrl":null,"url":null,"abstract":"Many mobile radio communications systems use a \"frequency division duplex\" (FDD) scheme to separate the reverse link (mobile-to-base) transmissions from the forward link (base-to-mobile) transmissions. FDD poses a difficult problem in the design of forward link smart antenna systems. The performance of such systems is limited by the quality of channel estimates. An often-considered compromise is to estimate the forward link vector channel as the eigenvector associated with the largest eigenvalue of the reverse link spatial covariance matrix R, averaged over many fades. The assumption is that R obtained in this manner represents primarily the path geometry of the channel, which is nominally frequency-independent, while averaging out frequency-selective fading, which is likely to be uncorrelated over the duplex separation in an FDD system. To verify that this is a reasonable assumption, it would be useful to compare direct, simultaneous measurements of the vector channel (that is, the coefficients describing the propagation between each antenna of the base station array and the single mobile antenna) at both the reverse and forward link frequencies in field conditions. This paper presents such measurements, obtained in a complex outdoor environment at 2.4 GHz. It is found that the agreement between the eigenvectors associated with the largest eigenvalue of R at the two frequencies is quite good.","PeriodicalId":173343,"journal":{"name":"IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2003.1220157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many mobile radio communications systems use a "frequency division duplex" (FDD) scheme to separate the reverse link (mobile-to-base) transmissions from the forward link (base-to-mobile) transmissions. FDD poses a difficult problem in the design of forward link smart antenna systems. The performance of such systems is limited by the quality of channel estimates. An often-considered compromise is to estimate the forward link vector channel as the eigenvector associated with the largest eigenvalue of the reverse link spatial covariance matrix R, averaged over many fades. The assumption is that R obtained in this manner represents primarily the path geometry of the channel, which is nominally frequency-independent, while averaging out frequency-selective fading, which is likely to be uncorrelated over the duplex separation in an FDD system. To verify that this is a reasonable assumption, it would be useful to compare direct, simultaneous measurements of the vector channel (that is, the coefficients describing the propagation between each antenna of the base station array and the single mobile antenna) at both the reverse and forward link frequencies in field conditions. This paper presents such measurements, obtained in a complex outdoor environment at 2.4 GHz. It is found that the agreement between the eigenvectors associated with the largest eigenvalue of R at the two frequencies is quite good.
2.4 GHz复杂室外环境下的矢量信道相干性
许多移动无线电通信系统使用“频分双工”(FDD)方案将反向链路(移动到基地)传输与正向链路(基地到移动)传输分开。FDD是前向链路智能天线系统设计中的一个难题。这种系统的性能受到信道估计质量的限制。一种经常被考虑的折衷方法是将前向链路矢量信道估计为与反向链路空间协方差矩阵R的最大特征值相关联的特征向量,并在多次淡出中取平均值。假设以这种方式获得的R主要表示信道的路径几何形状,这在名义上是与频率无关的,而平均出频率选择性衰落,这在FDD系统的双工分离中可能是不相关的。为了验证这是一个合理的假设,比较现场条件下反向和正向链路频率下矢量信道(即描述基站阵列的每个天线与单个移动天线之间传播的系数)的直接、同时测量值将是有用的。本文介绍了在2.4 GHz的复杂室外环境中获得的此类测量结果。结果表明,在两个频率上,与R的最大特征值相关的特征向量之间的一致性很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信