{"title":"Global regularity for solutions of the Navier–Stokes equation sufficiently close to being eigenfunctions of the Laplacian","authors":"E. Miller","doi":"10.1090/bproc/62","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we will prove a new, scale critical regularity criterion for solutions of the Navier–Stokes equation that are sufficiently close to being eigenfunctions of the Laplacian. This estimate improves previous regularity criteria requiring control on the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper H With dot Superscript alpha\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>H</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mi>α<!-- α --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\dot {H}^\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> norm of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">u,</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 less-than-or-equal-to alpha greater-than five halves comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mfrac>\n <mml:mn>5</mml:mn>\n <mml:mn>2</mml:mn>\n </mml:mfrac>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2\\leq \\alpha >\\frac {5}{2},</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to a regularity criterion requiring control on the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper H With dot Superscript alpha\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>H</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mi>α<!-- α --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\dot {H}^\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> norm multiplied by the deficit in the interpolation inequality for the embedding of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper H With dot Superscript alpha minus 2 Baseline intersection ModifyingAbove upper H With dot Superscript alpha Baseline right-arrow with hook ModifyingAbove upper H With dot Superscript alpha minus 1 Baseline period\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>H</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo>∩<!-- ∩ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>H</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>α<!-- α --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">↪<!-- ↪ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>H</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo>.</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\dot {H}^{\\alpha -2}\\cap \\dot {H}^{\\alpha } \\hookrightarrow \\dot {H}^{\\alpha -1}.</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> This regularity criterion suggests, at least heuristically, the possibility of some relationship between potential blowup solutions of the Navier–Stokes equation and the Kolmogorov-Obhukov spectrum in the theory of turbulence.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we will prove a new, scale critical regularity criterion for solutions of the Navier–Stokes equation that are sufficiently close to being eigenfunctions of the Laplacian. This estimate improves previous regularity criteria requiring control on the H˙α\dot {H}^\alpha norm of u,u, with 2≤α>52,2\leq \alpha >\frac {5}{2}, to a regularity criterion requiring control on the H˙α\dot {H}^\alpha norm multiplied by the deficit in the interpolation inequality for the embedding of H˙α−2∩H˙α↪H˙α−1.\dot {H}^{\alpha -2}\cap \dot {H}^{\alpha } \hookrightarrow \dot {H}^{\alpha -1}. This regularity criterion suggests, at least heuristically, the possibility of some relationship between potential blowup solutions of the Navier–Stokes equation and the Kolmogorov-Obhukov spectrum in the theory of turbulence.