Nessim Mahmoud, A. Barakat, A. A. El-Hameed, A. A. El-Rahman, A. Allam, R. Pokharel
{"title":"Study of SiO2 thickness effect on insertion loss of CMOS 60 GHz band pass filter","authors":"Nessim Mahmoud, A. Barakat, A. A. El-Hameed, A. A. El-Rahman, A. Allam, R. Pokharel","doi":"10.1109/ICECS.2015.7440292","DOIUrl":null,"url":null,"abstract":"This paper presents a study of the effect of the SiO2 substrate thickness on the insertion loss performance of half wavelength open loop resonator bandpass filter. It has been observed that the main reason for insertion loss degradation is the small thickness of SiO2. An insertion loss of -1.49dB is achieved with a SiO2 thickness of 24μm. Furthermore, an equivalent lumped circuit model of the filter is proposed to verify this observation. The S-parameters of lumped element circuit model are obtained using the ADS simulator and compared with the results obtained from the EM simulator showing good agreement.","PeriodicalId":215448,"journal":{"name":"2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2015.7440292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a study of the effect of the SiO2 substrate thickness on the insertion loss performance of half wavelength open loop resonator bandpass filter. It has been observed that the main reason for insertion loss degradation is the small thickness of SiO2. An insertion loss of -1.49dB is achieved with a SiO2 thickness of 24μm. Furthermore, an equivalent lumped circuit model of the filter is proposed to verify this observation. The S-parameters of lumped element circuit model are obtained using the ADS simulator and compared with the results obtained from the EM simulator showing good agreement.