Historical load curve correction for short-term load forecasting

Jingfei Yang, J. Stenzel
{"title":"Historical load curve correction for short-term load forecasting","authors":"Jingfei Yang, J. Stenzel","doi":"10.1109/IPEC.2005.206875","DOIUrl":null,"url":null,"abstract":"Short-term load forecasting (STLF) is a significant task for power system operation. The existence of bad data in historical load curve affects the precision of load forecasting result. This paper presents the second order difference method to detect the bad data, eliminate them and evaluate the real data. To decrease the effect of impulse load on the prediction result, weighted least square quadratic fitting is proposed to filter the curve. K-means clustering and support vector machine method are employed to forecast the future load. The proposed method is successfully applied to an actual power system","PeriodicalId":164802,"journal":{"name":"2005 International Power Engineering Conference","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Power Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPEC.2005.206875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Short-term load forecasting (STLF) is a significant task for power system operation. The existence of bad data in historical load curve affects the precision of load forecasting result. This paper presents the second order difference method to detect the bad data, eliminate them and evaluate the real data. To decrease the effect of impulse load on the prediction result, weighted least square quadratic fitting is proposed to filter the curve. K-means clustering and support vector machine method are employed to forecast the future load. The proposed method is successfully applied to an actual power system
短期负荷预测的历史负荷曲线修正
短期负荷预测是电力系统运行中的一项重要任务。历史负荷曲线中不良数据的存在影响了负荷预测结果的精度。本文提出了二阶差分法来检测、消除不良数据并对真实数据进行评价。为了降低冲击负荷对预测结果的影响,提出了加权最小二乘二次拟合对预测曲线进行滤波。采用k均值聚类和支持向量机方法对未来负荷进行预测。该方法已成功应用于实际电力系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信