{"title":"Role of counter-anion chemistry, free volume, and reaction byproducts in chemically amplified resists","authors":"Christopher M. Bottoms, M. Doxastakis, G. Stein","doi":"10.1117/12.2656952","DOIUrl":null,"url":null,"abstract":"Fundamental understanding of the physical processes controlling deprotection in chemical amplified resists (CARs) is critical to improve their utility for high-resolution lithography. We employ a combined experimental and computational method to examine the impacts of excess free volume generation, reaction byproducts, catalyst clustering, and catalyst counter-anion chemistry/size on deprotection rates in a model terpolymer CAR. These studies suggest that catalyst diffusion can be enhanced by a combination of excess free volume and reaction byproducts, and that counter-anion chemistry/size plays a key role in local reaction rates, which stems from differences in the rotational mobility of the catalyst.","PeriodicalId":212235,"journal":{"name":"Advanced Lithography","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2656952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Fundamental understanding of the physical processes controlling deprotection in chemical amplified resists (CARs) is critical to improve their utility for high-resolution lithography. We employ a combined experimental and computational method to examine the impacts of excess free volume generation, reaction byproducts, catalyst clustering, and catalyst counter-anion chemistry/size on deprotection rates in a model terpolymer CAR. These studies suggest that catalyst diffusion can be enhanced by a combination of excess free volume and reaction byproducts, and that counter-anion chemistry/size plays a key role in local reaction rates, which stems from differences in the rotational mobility of the catalyst.