Risk indicators anticipation based on the vehicle dynamics anticipation to avoid accidents

Raymond Ghandour, A. Victorino, A. Charara, D. Lechner
{"title":"Risk indicators anticipation based on the vehicle dynamics anticipation to avoid accidents","authors":"Raymond Ghandour, A. Victorino, A. Charara, D. Lechner","doi":"10.1109/IVS.2012.6232224","DOIUrl":null,"url":null,"abstract":"This article leads to the challenging problem of increasing vehicle driving security by applying on boarded intelligent diagnosis systems; it presents a methodology of evaluating, in an anticipated way, the risk of having an accident (skid and rollover). The methodology consists in adopting assumptions about the trajectory, the longitudinal velocity and the longitudinal acceleration in future instants and use these assumptions, allied to previous road information to calculate the future vehicle dynamics parameters. Once calculated, the risk indicators based on these parameters could be predicted in order to expect and avoid possible dangerous situations. These indicators are the lateral load transfer (LTR) based on vertical forces, and the lateral skid indicator (LSI) based ont the maximum friction coefficient and the used friction coefficient. A sliding window system is used to apply the method on the whole trajectory to take into account the vehicle dynamics updates by the driver.","PeriodicalId":402389,"journal":{"name":"2012 IEEE Intelligent Vehicles Symposium","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2012.6232224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This article leads to the challenging problem of increasing vehicle driving security by applying on boarded intelligent diagnosis systems; it presents a methodology of evaluating, in an anticipated way, the risk of having an accident (skid and rollover). The methodology consists in adopting assumptions about the trajectory, the longitudinal velocity and the longitudinal acceleration in future instants and use these assumptions, allied to previous road information to calculate the future vehicle dynamics parameters. Once calculated, the risk indicators based on these parameters could be predicted in order to expect and avoid possible dangerous situations. These indicators are the lateral load transfer (LTR) based on vertical forces, and the lateral skid indicator (LSI) based ont the maximum friction coefficient and the used friction coefficient. A sliding window system is used to apply the method on the whole trajectory to take into account the vehicle dynamics updates by the driver.
基于车辆动态预测的风险指标预测,避免事故发生
本文提出了应用车载智能诊断系统提高车辆行驶安全性的挑战性问题;它提出了一种评估方法,以一种预期的方式,发生事故(打滑和翻车)的风险。该方法采用对未来时刻的轨迹、纵向速度和纵向加速度的假设,并结合之前的道路信息计算未来车辆动力学参数。一旦计算出来,基于这些参数的风险指标就可以预测,从而预测和避免可能发生的危险情况。这些指标是基于垂直力的横向载荷传递(LTR)和基于最大摩擦系数和使用摩擦系数的横向滑动指标(LSI)。采用滑动窗口系统将该方法应用于整个轨迹,以考虑驾驶员对车辆动力学的更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信