Chandrakana Nandi, A. Caspi, D. Grossman, Zachary Tatlock
{"title":"Programming Language Tools and Techniques for 3D Printing","authors":"Chandrakana Nandi, A. Caspi, D. Grossman, Zachary Tatlock","doi":"10.4230/LIPIcs.SNAPL.2017.10","DOIUrl":null,"url":null,"abstract":"We propose a research agenda to investigate programming language techniques for improving affordable, end-user desktop manufacturing processes such as 3D printing. Our goal is to adapt programming languages tools and extend the decades of research in industrial, high-end CAD/CAM in order to help make affordable desktop manufacturing processes more accurate, fast, reliable, and accessible to end-users. We focus on three major areas where 3D printing can benefit from programming language tools: design synthesis, optimizing compilation, and runtime monitoring. We present preliminary results on synthesizing editable CAD models from difficult-to-edit surface meshes, discuss potential new compilation strategies, and propose runtime monitoring techniques. We conclude by discussing additional near-future directions we intend to pursue.","PeriodicalId":231548,"journal":{"name":"Summit on Advances in Programming Languages","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Summit on Advances in Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SNAPL.2017.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
We propose a research agenda to investigate programming language techniques for improving affordable, end-user desktop manufacturing processes such as 3D printing. Our goal is to adapt programming languages tools and extend the decades of research in industrial, high-end CAD/CAM in order to help make affordable desktop manufacturing processes more accurate, fast, reliable, and accessible to end-users. We focus on three major areas where 3D printing can benefit from programming language tools: design synthesis, optimizing compilation, and runtime monitoring. We present preliminary results on synthesizing editable CAD models from difficult-to-edit surface meshes, discuss potential new compilation strategies, and propose runtime monitoring techniques. We conclude by discussing additional near-future directions we intend to pursue.