3D moth-inspired chemical plume tracking

B. Gao, Hongbo Li, F. Sun
{"title":"3D moth-inspired chemical plume tracking","authors":"B. Gao, Hongbo Li, F. Sun","doi":"10.1109/ROBIO.2015.7419031","DOIUrl":null,"url":null,"abstract":"This paper analyzes the conventional moth inspired chemical plume tracking, and presents a 3D moth-inspired CPT using multi-sensors. The aim of CPT is tracking a target chemical flow back to its source and declaring its location. While the moths acturally perform their CPT in 3D space, the majority of related works are based on wheels robots in 2D. Nowadays the rapid development of rotorcrafts makes the 3D plume tracking possible. Hence in this paper, we first present a detailed analysis of moth-inspired CPT work flow, then extend the orthodox moth-inspired CPT from 2D to 3D. Our simulation results demonstrate that our the multi-sensor CPT strategy proposed is a feasible and efficient method to locate odour source.","PeriodicalId":325536,"journal":{"name":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2015.7419031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper analyzes the conventional moth inspired chemical plume tracking, and presents a 3D moth-inspired CPT using multi-sensors. The aim of CPT is tracking a target chemical flow back to its source and declaring its location. While the moths acturally perform their CPT in 3D space, the majority of related works are based on wheels robots in 2D. Nowadays the rapid development of rotorcrafts makes the 3D plume tracking possible. Hence in this paper, we first present a detailed analysis of moth-inspired CPT work flow, then extend the orthodox moth-inspired CPT from 2D to 3D. Our simulation results demonstrate that our the multi-sensor CPT strategy proposed is a feasible and efficient method to locate odour source.
3D飞蛾启发的化学羽流跟踪
分析了传统的飞蛾化学羽流跟踪方法,提出了一种基于多传感器的三维飞蛾化学羽流跟踪方法。CPT的目的是追踪目标化学物质的流向,找到其来源并宣布其位置。虽然飞蛾实际上是在3D空间中执行CPT,但大多数相关作品都是基于2D的轮式机器人。近年来旋翼飞机的飞速发展使三维羽流跟踪成为可能。因此,在本文中,我们首先详细分析了飞蛾启发CPT的工作流程,然后将传统的飞蛾启发CPT从2D扩展到3D。仿真结果表明,我们提出的多传感器CPT策略是一种有效可行的气味源定位方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信