Real-time estimation of human body postures using Kalman filter

K. Takahashi, T. Sakaguchi, J. Ohya
{"title":"Real-time estimation of human body postures using Kalman filter","authors":"K. Takahashi, T. Sakaguchi, J. Ohya","doi":"10.1109/ROMAN.1999.900338","DOIUrl":null,"url":null,"abstract":"Presents a hybrid estimation method of human body postures from CCD camera images. In the hybrid estimation method, the feature points of the human body (top of the head, tips of the hands, and feet, and elbow joints) are obtained from the results of heuristic contour analyses of human silhouettes or those of a time subtraction image depending on the reliability of the silhouette information. A dynamic compensation is then carried out by tracking all feature points using the AR model in order to obtain their optimal position and to overcome self-occlusion problems. The AR model's parameters are estimated through online processing by the Kalman filter. The proposed method is implemented on a personal computer and the process runs in real-time. Experimental results show high estimation accuracy and the feasibility of the proposed method.","PeriodicalId":200240,"journal":{"name":"8th IEEE International Workshop on Robot and Human Interaction. RO-MAN '99 (Cat. No.99TH8483)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th IEEE International Workshop on Robot and Human Interaction. RO-MAN '99 (Cat. No.99TH8483)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.1999.900338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Presents a hybrid estimation method of human body postures from CCD camera images. In the hybrid estimation method, the feature points of the human body (top of the head, tips of the hands, and feet, and elbow joints) are obtained from the results of heuristic contour analyses of human silhouettes or those of a time subtraction image depending on the reliability of the silhouette information. A dynamic compensation is then carried out by tracking all feature points using the AR model in order to obtain their optimal position and to overcome self-occlusion problems. The AR model's parameters are estimated through online processing by the Kalman filter. The proposed method is implemented on a personal computer and the process runs in real-time. Experimental results show high estimation accuracy and the feasibility of the proposed method.
基于卡尔曼滤波的人体姿态实时估计
提出了一种基于CCD相机图像的人体姿态混合估计方法。在混合估计方法中,根据轮廓信息的可靠性,从人体轮廓的启发式轮廓分析结果或时间相减图像的轮廓分析结果中获得人体的特征点(头顶、手足尖和肘关节)。然后利用AR模型跟踪所有特征点进行动态补偿,以获得它们的最佳位置并克服自遮挡问题。通过卡尔曼滤波对AR模型的参数进行在线估计。该方法在个人计算机上实现,过程实时运行。实验结果表明,该方法具有较高的估计精度和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信