A Segmentation Technique Based on Standard Deviation in Body Sensor Networks

E. Guenterberg, Hassan Ghasemzadeh, Roozbeh Jafari, R. Bajcsy
{"title":"A Segmentation Technique Based on Standard Deviation in Body Sensor Networks","authors":"E. Guenterberg, Hassan Ghasemzadeh, Roozbeh Jafari, R. Bajcsy","doi":"10.1109/EMBSW.2007.4454174","DOIUrl":null,"url":null,"abstract":"Pervasive health monitoring utilizing wearable wireless sensor nodes can greatly enhance the quality of care individuals receive. Such systems, while in terms of signal processing mostly depend on pattern recognition schemes, must operate independently of human interaction for extended periods. The lack of a general-purpose computationally inexpensive algorithm capable of segmenting sensor readings into discrete actions and nonactions has hindered the development of these systems. We examine a segmentation scheme based on standard deviation metric. We provide experimental verification of the method.","PeriodicalId":333843,"journal":{"name":"2007 IEEE Dallas Engineering in Medicine and Biology Workshop","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Dallas Engineering in Medicine and Biology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBSW.2007.4454174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Pervasive health monitoring utilizing wearable wireless sensor nodes can greatly enhance the quality of care individuals receive. Such systems, while in terms of signal processing mostly depend on pattern recognition schemes, must operate independently of human interaction for extended periods. The lack of a general-purpose computationally inexpensive algorithm capable of segmenting sensor readings into discrete actions and nonactions has hindered the development of these systems. We examine a segmentation scheme based on standard deviation metric. We provide experimental verification of the method.
基于标准差的人体传感器网络分割技术
利用可穿戴无线传感器节点的普及健康监测可以大大提高个人接受的护理质量。这样的系统虽然在信号处理方面主要依赖于模式识别方案,但必须在长时间内独立于人类交互而运行。缺乏一种通用的计算廉价的算法,能够将传感器读数分割为离散的动作和非动作,阻碍了这些系统的发展。我们研究了一种基于标准差度量的分割方案。我们提供了该方法的实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信