Tensor quasi-random groups

Mark Sellke
{"title":"Tensor quasi-random groups","authors":"Mark Sellke","doi":"10.1090/bproc/86","DOIUrl":null,"url":null,"abstract":"<p>Gowers [Combin. Probab. Comput. 17 (2008), pp. 363–387] elegantly characterized the finite groups <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in which <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A 1 upper A 2 upper A 3 equals upper G\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msub>\n <mml:mo>=</mml:mo>\n <mml:mi>G</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">A_1A_2A_3=G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for any positive density subsets <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A 1 comma upper A 2 comma upper A 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">A_1,A_2,A_3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This property, <italic>quasi-randomness</italic>, holds if and only if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> does not admit a nontrivial irreducible representation of constant dimension. We present a dual characterization of <italic>tensor quasi-random</italic> groups in which multiplication of subsets is replaced by tensor product of representations.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Gowers [Combin. Probab. Comput. 17 (2008), pp. 363–387] elegantly characterized the finite groups G G in which A 1 A 2 A 3 = G A_1A_2A_3=G for any positive density subsets A 1 , A 2 , A 3 A_1,A_2,A_3 . This property, quasi-randomness, holds if and only if G G does not admit a nontrivial irreducible representation of constant dimension. We present a dual characterization of tensor quasi-random groups in which multiplication of subsets is replaced by tensor product of representations.

张量拟随机群
(Combin高尔。Probab。计算,17 (2008),pp. 363-387]对任意正密度子集a1, a2, a3a_1,A_2,A_3的A 1,A 2,A 3=G的有限群G G进行了优雅的刻画。当且仅当G G不承认常维的非平凡不可约表示时,拟随机性这一性质成立。我们给出了张量拟随机群的对偶刻画,其中子集的乘法用表示的张量积代替。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信