An experimental methodology for the in-situ observation of the time-dependent dielectric breakdown mechanism in Copper/low-k on-chip interconnect structures

K. Yeap, M. Gall, C. Sander, S. Niese, Z. Liao, Y. Ritz, R. Rosenkranz, U. Muhle, J. Gluch, E. Zschech, O. Aubel, A. Beyer, C. Hennesthal, M. Hauschildt, G. Talut, J. Poppe, N. Vogel, H. Engelmann, D. Stauffer, R. Major, O. Warren
{"title":"An experimental methodology for the in-situ observation of the time-dependent dielectric breakdown mechanism in Copper/low-k on-chip interconnect structures","authors":"K. Yeap, M. Gall, C. Sander, S. Niese, Z. Liao, Y. Ritz, R. Rosenkranz, U. Muhle, J. Gluch, E. Zschech, O. Aubel, A. Beyer, C. Hennesthal, M. Hauschildt, G. Talut, J. Poppe, N. Vogel, H. Engelmann, D. Stauffer, R. Major, O. Warren","doi":"10.1109/IRPS.2013.6531966","DOIUrl":null,"url":null,"abstract":"This study captures the time-dependent dielectric breakdown kinetics in nanoscale Cu/low-k interconnect structures, applying in-situ transmission electron microscopy (TEM) imaging and post-mortem electron spectroscopic imaging (ESI). A “tip-to-tip” test structure and an experimental methodology were established to observe the localized damage mechanisms under a constant voltage stress as a function of time. In an interconnect structure with partly breached barriers, in-situ TEM imaging shows Cu nanoparticle formation, agglomeration and movement in porous organosilicate glasses. In a flawless interconnect structure, in-situ TEM imaging and ESI mapping show close to no evidence of Cu diffusion in the TDDB process. From the ESI mapping, only a narrow Cu trace is found at the SiCN/OSG interface. In both cases, when barriers are breached or still intact, the initial damage is observed at the top interface of M1 between SiCN and OSG.","PeriodicalId":138206,"journal":{"name":"2013 IEEE International Reliability Physics Symposium (IRPS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2013.6531966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This study captures the time-dependent dielectric breakdown kinetics in nanoscale Cu/low-k interconnect structures, applying in-situ transmission electron microscopy (TEM) imaging and post-mortem electron spectroscopic imaging (ESI). A “tip-to-tip” test structure and an experimental methodology were established to observe the localized damage mechanisms under a constant voltage stress as a function of time. In an interconnect structure with partly breached barriers, in-situ TEM imaging shows Cu nanoparticle formation, agglomeration and movement in porous organosilicate glasses. In a flawless interconnect structure, in-situ TEM imaging and ESI mapping show close to no evidence of Cu diffusion in the TDDB process. From the ESI mapping, only a narrow Cu trace is found at the SiCN/OSG interface. In both cases, when barriers are breached or still intact, the initial damage is observed at the top interface of M1 between SiCN and OSG.
铜/低k片上互连结构中随时间变化的介电击穿机制的原位观察实验方法
本研究采用原位透射电子显微镜(TEM)成像和死后电子光谱成像(ESI)技术,捕捉了纳米级Cu/低k互连结构中随时间变化的介电击穿动力学。建立了一种“尖端对尖端”试验结构和实验方法,以观察恒电压应力下的局部损伤机制与时间的关系。在具有部分突破屏障的互连结构中,原位透射电镜成像显示了多孔有机硅酸盐玻璃中Cu纳米颗粒的形成、团聚和运动。在完美的互连结构中,原位TEM成像和ESI图谱显示TDDB过程中几乎没有Cu扩散的证据。从ESI映射中,在SiCN/OSG界面上只发现了一条狭窄的Cu迹线。在这两种情况下,当屏障被破坏或仍然完好时,在SiCN和OSG之间的M1顶部界面上观察到初始损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信