A Generative Framework to Query Recommendation and Evaluation

M. Mitsui
{"title":"A Generative Framework to Query Recommendation and Evaluation","authors":"M. Mitsui","doi":"10.1145/3020165.3022172","DOIUrl":null,"url":null,"abstract":"In practice, query recommenders in Web search typically recommend queries directly from a query log or iteratively refine a user's current context to make recommendations. These approaches either limit themselves to queries in the log or do not take necessary exploratory leaps in their recommendations. Moreover, they do not directly incorporate the encompassing, driving information needs and tasks. The author first shows that user queries may not necessarily be the best to use for recommendations and moreover proposes a framework for generating novel queries for query recommendation, using an approximation of need.","PeriodicalId":398762,"journal":{"name":"Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3020165.3022172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In practice, query recommenders in Web search typically recommend queries directly from a query log or iteratively refine a user's current context to make recommendations. These approaches either limit themselves to queries in the log or do not take necessary exploratory leaps in their recommendations. Moreover, they do not directly incorporate the encompassing, driving information needs and tasks. The author first shows that user queries may not necessarily be the best to use for recommendations and moreover proposes a framework for generating novel queries for query recommendation, using an approximation of need.
基于生成框架的推荐与评价查询
在实践中,Web搜索中的查询推荐器通常直接从查询日志中推荐查询,或者迭代地改进用户的当前上下文以提出建议。这些方法要么将自己限制在日志中的查询,要么在其建议中没有进行必要的探索性飞跃。此外,它们并不直接包含包含的、驱动的信息需求和任务。作者首先表明,用户查询不一定是用于推荐的最佳查询,并且提出了一个框架,使用近似需求来生成用于查询推荐的新查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信