Geoacoustic model inversion with artificial neural networks

J. Benson, N. Chapman, A. Antoniou
{"title":"Geoacoustic model inversion with artificial neural networks","authors":"J. Benson, N. Chapman, A. Antoniou","doi":"10.1109/ADFSP.1998.685708","DOIUrl":null,"url":null,"abstract":"An ocean parameter estimation methodology is presented which involves neural networks. Both multi-layered perceptron networks and radial basis function networks were trained to estimate ocean bottom parameters from a received acoustic signal. The network's design algorithms are presented and their relative merits discussed. The pre-processing of the data is described in detail. A comparison of the relative accuracies of the two networks for simulated data is presented. The inversion of actual data from the TRIAL SABLE experiment was performed and the parameter estimates are given.","PeriodicalId":424855,"journal":{"name":"1998 IEEE Symposium on Advances in Digital Filtering and Signal Processing. Symposium Proceedings (Cat. No.98EX185)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE Symposium on Advances in Digital Filtering and Signal Processing. Symposium Proceedings (Cat. No.98EX185)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADFSP.1998.685708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An ocean parameter estimation methodology is presented which involves neural networks. Both multi-layered perceptron networks and radial basis function networks were trained to estimate ocean bottom parameters from a received acoustic signal. The network's design algorithms are presented and their relative merits discussed. The pre-processing of the data is described in detail. A comparison of the relative accuracies of the two networks for simulated data is presented. The inversion of actual data from the TRIAL SABLE experiment was performed and the parameter estimates are given.
基于人工神经网络的地球声模型反演
提出了一种基于神经网络的海洋参数估计方法。训练多层感知器网络和径向基函数网络从接收到的声信号中估计海底参数。介绍了网络的设计算法,并讨论了它们的优缺点。详细描述了数据的预处理过程。比较了两种网络对模拟数据的相对精度。对TRIAL SABLE试验的实际数据进行了反演,并给出了参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信