Distance function associated with the g-integral with respect to the interval-valued ⊕-measure

S. Medić, N. Duraković, Vesna Bogdanović, T. Grbić, I. Lončarević, L. Budinski-Petković
{"title":"Distance function associated with the g-integral with respect to the interval-valued ⊕-measure","authors":"S. Medić, N. Duraković, Vesna Bogdanović, T. Grbić, I. Lončarević, L. Budinski-Petković","doi":"10.1109/SISY.2017.8080530","DOIUrl":null,"url":null,"abstract":"In the classical measure theory, the distance between two m-integrable functions f<inf>1</inf> and f<inf>2</inf> can be defined as L<sup>1</sup> norm of |f<inf>1</inf> − f<inf>2</inf>|, i.e. d(f<inf>1</inf>, f<inf>2</inf>) = ∫<inf>X</inf> |f<inf>1</inf> − f<inf>2</inf>|dm. Instead of the Lebesgue integral, the g-integrals with respect to the interval-valued ⊕-measure [μ<inf>l</inf>, μ<inf>r</inf>], where g is an increasing function, is considered, and instead of the distance |f<inf>1</inf> − f<inf>2</inf>|, the function d<inf>⊕</inf>(f<inf>1</inf>, f<inf>2</inf>) is considered. The defined distance is an interval-valued distance function between two measurable functions which maps a nonempty set X to [a, b], where ([a, b], ⊕, ⊙) is a g-semiring with an increasing generator g.","PeriodicalId":352891,"journal":{"name":"2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"470 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2017.8080530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the classical measure theory, the distance between two m-integrable functions f1 and f2 can be defined as L1 norm of |f1 − f2|, i.e. d(f1, f2) = ∫X |f1 − f2|dm. Instead of the Lebesgue integral, the g-integrals with respect to the interval-valued ⊕-measure [μl, μr], where g is an increasing function, is considered, and instead of the distance |f1 − f2|, the function d(f1, f2) is considered. The defined distance is an interval-valued distance function between two measurable functions which maps a nonempty set X to [a, b], where ([a, b], ⊕, ⊙) is a g-semiring with an increasing generator g.
与区间值⊕测度的g积分相关的距离函数
在经典测度理论中,两个m可积函数f1与f2之间的距离可以定义为|f1−f2|的L1范数,即d(f1, f2) =∫X |f1−f2|dm。这里不考虑Lebesgue积分,而是考虑关于区间值⊕-测度[μl, μr]的g积分,其中g是递增函数,并且不考虑距离|f1−f2|,而是考虑函数d⊕(f1, f2)。定义的距离是两个可测函数之间的区间值距离函数,它将非空集合X映射到[a, b],其中([a, b],⊕,⊙)是一个具有递增生成子g的g-半环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信