Detection of Wet Road Surfaces from Acoustic Signals using Scalogram and Optimized AlexNet

K. K. Mohd Shariff, S. Zainuddin, Megat Syahirul Amin Megat Ali
{"title":"Detection of Wet Road Surfaces from Acoustic Signals using Scalogram and Optimized AlexNet","authors":"K. K. Mohd Shariff, S. Zainuddin, Megat Syahirul Amin Megat Ali","doi":"10.1109/iscaie54458.2022.9794556","DOIUrl":null,"url":null,"abstract":"Wet road surface increases the risk of traffic accidents. Hence, there is a need for automated systems that could detect this and provide early warning to the road users. The study proposes to detect wet road surfaces using acoustic signals and convolutional neural network. Data is acquired from the IDMT-Traffic database. The acoustic measurements are then, converted into scalogram and used to train the AlexNet. Two optimizers and learning rate settings are assessed in this study. The best performance is attained with Adam optimizer and low learning rate, yielding validation accuracy of 89.9%. Generally, implementation of acoustic signals and optimized AlexNet is feasible for detecting wet road surfaces.","PeriodicalId":395670,"journal":{"name":"2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iscaie54458.2022.9794556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Wet road surface increases the risk of traffic accidents. Hence, there is a need for automated systems that could detect this and provide early warning to the road users. The study proposes to detect wet road surfaces using acoustic signals and convolutional neural network. Data is acquired from the IDMT-Traffic database. The acoustic measurements are then, converted into scalogram and used to train the AlexNet. Two optimizers and learning rate settings are assessed in this study. The best performance is attained with Adam optimizer and low learning rate, yielding validation accuracy of 89.9%. Generally, implementation of acoustic signals and optimized AlexNet is feasible for detecting wet road surfaces.
基于尺度图和优化AlexNet的湿路面声信号检测
潮湿的路面增加了发生交通事故的危险。因此,需要能够检测到这种情况并向道路使用者提供早期预警的自动化系统。该研究提出使用声学信号和卷积神经网络来检测湿路面。数据从IDMT-Traffic数据库中获取。然后,声学测量被转换成尺度图,用于训练AlexNet。本研究评估了两种优化器和学习率设置。使用Adam优化器和较低的学习率获得最佳性能,验证准确率为89.9%。一般来说,采用声信号和优化后的AlexNet来检测湿路面是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信